Effect of formation of “long range” secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity

International Journal of Heat and Mass Transfer - Tập 91 - Trang 342-346 - 2015
Hani Tiznobaik1, Debjyoti Banerjee2, Donghyun Shin1
1Mechanical and Aerospace Engineering, The University of Texas at Arlington, Box 19023 UTA, Arlington, TX 76019-0023, USA
2Mail Stop 3123, Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, 99

Keblinski, 2005, Nanofluids for thermal transport, Mater. Today, 8, 36, 10.1016/S1369-7021(05)70936-6

Wang, 2007, Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 46, 1, 10.1016/j.ijthermalsci.2006.06.010

Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218

Eapen, 2007, Mean-field versus microconvection effects in nanofluid thermal conduction, Phys. Rev. Lett., 99, 095901, 10.1103/PhysRevLett.99.095901

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080

Li, 2006, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys., 99, 084314, 10.1063/1.2191571

Keblinski, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45, 855, 10.1016/S0017-9310(01)00175-2

Jang, 2004, Role of brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684

Evans, 2006, Role of brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. Phys. Lett., 88, 093116, 10.1063/1.2179118

Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell model, J. Nanopart. Res., 5, 167, 10.1023/A:1024438603801

Xue, 2004, Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer, 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016

Buongiorno, 2009, A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106, 094312, 10.1063/1.3245330

Evans, 2008, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transfer, 51, 1431, 10.1016/j.ijheatmasstransfer.2007.10.017

Prasher, 2006, Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid), Nano Lett., 6, 1529, 10.1021/nl060992s

Keblinski, 2008, Thermal conductance of nanofluids: is the controversy over?, J. Nanopart. Res., 10, 1089, 10.1007/s11051-007-9352-1

Namburu, 2007, Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids, Micro Nano Lett. IET, 2, 67, 10.1049/mnl:20070037

Zhou, 2008, Appl. Phys. Lett., 92

Vajjha, 2009, Specific heat measurement of three nanofluids and development of new correlations, J. Heat Transfer, 131, 071601, 10.1115/1.3090813

Nelson, 2009, Flow loop experiments using polyalphaolefin nanofluids, J. Thermophys. Heat Transfer, 23, 752, 10.2514/1.31033

Shin, 2011, Enhanced specific heat of silica nanofluid, J. Heat Transfer, 133, 024501, 10.1115/1.4002600

Shin, 2011, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, Int. J. Heat Mass Transfer, 54, 1064, 10.1016/j.ijheatmasstransfer.2010.11.017

Ho, 2014, Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity, Int. J. Heat Mass Transfer, 70, 174, 10.1016/j.ijheatmasstransfer.2013.10.078

Chieruzzi, 2013, Nanoscale Res. Lett., 8, 10.1186/1556-276X-8-448

Tiznobaik, 2013, Enhanced specific heat capacity of high-temperature molten salt-based nanofluids, Int. J. Heat Mass Transfer, 57, 542, 10.1016/j.ijheatmasstransfer.2012.10.062

Shin, 2013, Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures, J. Heat Transfer, 135, 032801, 10.1115/1.4005163

Tiznobaik, 2013, Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial, Appl. Phys. Lett., 102, 173906, 10.1063/1.4801645

Shin, 2014, Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic, Int. J. Heat Mass Transfer, 74, 210, 10.1016/j.ijheatmasstransfer.2014.02.066

Shin, 2014, Specific heat mechanism of molten salt nanofluids, Appl. Phys. Lett., 104, 121914, 10.1063/1.4868254

Méndez-Castro, 2013, Heat capacity singularity of binary liquid mixtures at the liquid–liquid critical point, Phys. Rev. E, 88, 042107, 10.1103/PhysRevE.88.042107

Andreu-Cabedo, 2014, Increment of specific heat capacity of solar salt with SiO2 nanoparticles, Nanoscale Res. Lett., 9, 1, 10.1186/1556-276X-9-582

Zhichao, 2015, Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material, Int. J. Heat Mass Transfer, 80, 653, 10.1016/j.ijheatmasstransfer.2014.09.069

Fox, 2013, Thermophysical properties of nanoparticle-enhanced ionic liquids (NEILs) heat-transfer fluids, Energy Fuels, 27, 3385, 10.1021/ef4002617

Bridges, 2011, Potential of nanoparticle-enhanced ionic liquids (NEILs) as advanced heat-transfer fluids, Energy Fuels, 25, 4862, 10.1021/ef2012084

Paul, 2013, Nanoparticle enhanced ionic liquids (NEILS) as working fluid for the next generation solar collector, Procedia Eng., 56, 631, 10.1016/j.proeng.2013.03.170

Liu, 2014, Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications, Renewable Energy, 63, 519, 10.1016/j.renene.2013.10.002

MacFarlane, 2014, Energy applications of ionic liquids, Energy Environ. Sci., 7, 232, 10.1039/C3EE42099J

Araki, 1988, Measurement of thermophysical properties of molten salts: mixtures of alkaline carbonate salts, Int. J. Thermophys., 9, 1071, 10.1007/BF01133274

Wang, 2001, Enhancement of molar heat capacity of nanostructured Al2O3, J. Nanopart. Res., 3, 483, 10.1023/A:1012514216429

Wang, 2006, Surface and size effects on the specific heat capacity of nanoparticles, Int. J. Thermophys., 27, 139, 10.1007/s10765-006-0022-9

Avramov, 2008, Specific heat of nanocrystals, J. Phys. Condens. Matter, 20, 295224, 10.1088/0953-8984/20/29/295224