Effect of formation of “long range” secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, 99
Keblinski, 2005, Nanofluids for thermal transport, Mater. Today, 8, 36, 10.1016/S1369-7021(05)70936-6
Wang, 2007, Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 46, 1, 10.1016/j.ijthermalsci.2006.06.010
Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218
Eapen, 2007, Mean-field versus microconvection effects in nanofluid thermal conduction, Phys. Rev. Lett., 99, 095901, 10.1103/PhysRevLett.99.095901
Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080
Li, 2006, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys., 99, 084314, 10.1063/1.2191571
Keblinski, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45, 855, 10.1016/S0017-9310(01)00175-2
Jang, 2004, Role of brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684
Evans, 2006, Role of brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. Phys. Lett., 88, 093116, 10.1063/1.2179118
Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated maxwell model, J. Nanopart. Res., 5, 167, 10.1023/A:1024438603801
Xue, 2004, Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer, 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016
Buongiorno, 2009, A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106, 094312, 10.1063/1.3245330
Evans, 2008, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transfer, 51, 1431, 10.1016/j.ijheatmasstransfer.2007.10.017
Prasher, 2006, Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid), Nano Lett., 6, 1529, 10.1021/nl060992s
Keblinski, 2008, Thermal conductance of nanofluids: is the controversy over?, J. Nanopart. Res., 10, 1089, 10.1007/s11051-007-9352-1
Namburu, 2007, Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids, Micro Nano Lett. IET, 2, 67, 10.1049/mnl:20070037
Zhou, 2008, Appl. Phys. Lett., 92
Vajjha, 2009, Specific heat measurement of three nanofluids and development of new correlations, J. Heat Transfer, 131, 071601, 10.1115/1.3090813
Nelson, 2009, Flow loop experiments using polyalphaolefin nanofluids, J. Thermophys. Heat Transfer, 23, 752, 10.2514/1.31033
Shin, 2011, Enhanced specific heat of silica nanofluid, J. Heat Transfer, 133, 024501, 10.1115/1.4002600
Shin, 2011, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, Int. J. Heat Mass Transfer, 54, 1064, 10.1016/j.ijheatmasstransfer.2010.11.017
Ho, 2014, Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity, Int. J. Heat Mass Transfer, 70, 174, 10.1016/j.ijheatmasstransfer.2013.10.078
Tiznobaik, 2013, Enhanced specific heat capacity of high-temperature molten salt-based nanofluids, Int. J. Heat Mass Transfer, 57, 542, 10.1016/j.ijheatmasstransfer.2012.10.062
Shin, 2013, Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures, J. Heat Transfer, 135, 032801, 10.1115/1.4005163
Tiznobaik, 2013, Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial, Appl. Phys. Lett., 102, 173906, 10.1063/1.4801645
Shin, 2014, Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic, Int. J. Heat Mass Transfer, 74, 210, 10.1016/j.ijheatmasstransfer.2014.02.066
Shin, 2014, Specific heat mechanism of molten salt nanofluids, Appl. Phys. Lett., 104, 121914, 10.1063/1.4868254
Méndez-Castro, 2013, Heat capacity singularity of binary liquid mixtures at the liquid–liquid critical point, Phys. Rev. E, 88, 042107, 10.1103/PhysRevE.88.042107
Andreu-Cabedo, 2014, Increment of specific heat capacity of solar salt with SiO2 nanoparticles, Nanoscale Res. Lett., 9, 1, 10.1186/1556-276X-9-582
Zhichao, 2015, Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material, Int. J. Heat Mass Transfer, 80, 653, 10.1016/j.ijheatmasstransfer.2014.09.069
Fox, 2013, Thermophysical properties of nanoparticle-enhanced ionic liquids (NEILs) heat-transfer fluids, Energy Fuels, 27, 3385, 10.1021/ef4002617
Bridges, 2011, Potential of nanoparticle-enhanced ionic liquids (NEILs) as advanced heat-transfer fluids, Energy Fuels, 25, 4862, 10.1021/ef2012084
Paul, 2013, Nanoparticle enhanced ionic liquids (NEILS) as working fluid for the next generation solar collector, Procedia Eng., 56, 631, 10.1016/j.proeng.2013.03.170
Liu, 2014, Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications, Renewable Energy, 63, 519, 10.1016/j.renene.2013.10.002
MacFarlane, 2014, Energy applications of ionic liquids, Energy Environ. Sci., 7, 232, 10.1039/C3EE42099J
Araki, 1988, Measurement of thermophysical properties of molten salts: mixtures of alkaline carbonate salts, Int. J. Thermophys., 9, 1071, 10.1007/BF01133274
Wang, 2001, Enhancement of molar heat capacity of nanostructured Al2O3, J. Nanopart. Res., 3, 483, 10.1023/A:1012514216429
Wang, 2006, Surface and size effects on the specific heat capacity of nanoparticles, Int. J. Thermophys., 27, 139, 10.1007/s10765-006-0022-9