Ảnh hưởng của lực cắt chất lỏng đến hoạt động xúc tác của các hạt nano biopalladium được sản xuất bởi Klebsiella Pneumoniae ECU-15 trong phản ứng giảm Cr(VI)

Bioresources and Bioprocessing - Tập 1 Số 1 - 2014
Bin Lei1, Xu Zhang1, Mingming Zhu1, Wen‐Song Tan1
1State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China

Tóm tắt

Tóm tắtĐặt vấn đềCác hạt nano biopalladium (bioPd(0)) trên Klebsiella Pneumoniae ECU-15 chủ yếu được tổng hợp trên bề mặt của vi sinh vật này. Dữ liệu cho thấy rằng sự kháng khuẩn trong quá trình truyền khối quanh vùng bề mặt tế bào đóng vai trò quan trọng trong quá trình tổng hợp bioPd(0). Tuy nhiên, cơ chế của vai trò này vẫn còn chưa rõ ràng.Kết quảCác kết quả thực nghiệm chỉ ra rằng 1) sự kháng khuẩn tồn tại quanh tế bào của vi sinh vật trong bình phản ứng và 2) lực cắt chất lỏng ảnh hưởng đến tỷ lệ truyền khối một cách khác nhau tùy thuộc vào cường độ của nó, dẫn đến các ảnh hưởng khác nhau lên quá trình tổng hợp bioPd(0). Hơn 97.9 ± 1.5% Chromium(VI) (Cr(VI)) (384 μM) đã được giảm xuống Cr(III) trong vòng 20 phút với 5% Pd/bioPd(0) làm chất xúc tác, được tạo ra bởi K. Pneumoniae ECU-15, và hiệu suất xúc tác của Pd/bioPd(0) ổn định trong hơn 6 tháng. Điều kiện tối ưu cho quá trình sinh giảm Pd(II) thành Pd(0) được xác định tại độ dài xoáy Kolmogorov là 7.33 ± 0.5 μm và kéo dài trong 1 giờ trong quá trình giảm kéo dài sau quá trình hấp phụ và giảm thông thường.Kết luậnĐi đến kết luận rằng hoạt động xúc tác cao của bioPd(0) có thể đạt được bằng cách kiểm soát cường độ lực cắt chất lỏng trong quá trình giảm kéo dài trong bioractor.

Từ khóa


Tài liệu tham khảo

Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE: Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 2002, 80: 369–379. 10.1002/bit.10369

Hennebel T, De Gusseme B, Boon N, Verstraete W: Biogenic metals in advanced water treatment. Trends Biotechnol 2009, 27: 90–98. 10.1016/j.tibtech.2008.11.002

Rotaru AE, Jiang W, Finster K, Skrydstrup T, Meyer RL: Non‐enzymatic palladium recovery on microbial and synthetic surfaces. Biotechnol Bioeng 2012, 109: 1889–1897. 10.1002/bit.24500

Karthikeya S, Beveridge TJ: Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environ Microbiol 2002, 4: 667–675. 10.1046/j.1462-2920.2002.00353.x

Humphries AC, Nott KP, Hall LD, Macaskie LE: Reduction of Cr(VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. Environ Microbiol 2005, 90: 589–596.

Lloyd JR, Yong P, Macaskie LE: Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 1998, 64: 4607–4609.

Creamer NJ, Mikheenko IP, Yong P, Deplanche K, Sanyahumbi D, Wood J, Pollmann K, Merroun M, Selenska-Pobell S, Macaskie L: Novel supported Pd hydrogenation bionanocatalyst for hybrid homogeneous/heterogeneous catalysis. Catal Today 2007, 128: 80–87. 10.1016/j.cattod.2007.04.014

De Windt W, Aelterman P, Verstraete W: Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 2005, 7: 314–325. 10.1111/j.1462-2920.2005.00696.x

Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE: Involvement of hydrogenases in the formation of highly catalytic Pd (0) nanoparticles by bioreduction of Pd (II) using Escherichia coli mutant strains. Microbiol 2010, 156: 2630–2640. 10.1099/mic.0.036681-0

Martins M, Assuncao A, Martins H, Matos AP, Costa MC: Palladium recovery as nanoparticles by an anaerobic bacterial community. J Chem Technol Biotechnol 2013, 88: 2039–2045.

Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts JP: Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ Sci Technol 2010, 44: 7635–7640. 10.1021/es101559r

Niu K, Zhang X, Tan WS, Zhu ML: Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 2010, 35: 71–80. 10.1016/j.ijhydene.2009.10.071

Hennebel T, Van Nevel S, Verschuere S, De Corte S, De Gusseme B, Cuvelier C, Fitts JP, Van der Lelie D, Boon N, Verstraete W: Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol 2011, 91: 1435–1445. 10.1007/s00253-011-3329-9

Deplanche K, Merroun ML, Casadesus M, Tran DT, Mikheenko IP, Bennett JA, Zhu J, Jones IP, Attard GA, Swlenska-Pobell S, Macaskie LE: Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 2012, 9: 1705–1712. 10.1098/rsif.2012.0003

Han GZ, Chen MD: Microwave peak absorption frequency of liquid. S Sci China Ser G-Phys Mech Astron 2008, 51: 1254–1263. 10.1007/s11433-008-0144-0

Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA: A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005, 437: 426–431. 10.1038/nature03952

Deplanche K, Mikheenko I, Bennett J, Merroun M, Mounzer H, Wood J, Macaskie L: Selective oxidation of benzyl-alcohol over biomass-supported Au/Pd bioinorganic catalysts. Top Catal 2011, 54: 1110–1114. 10.1007/s11244-011-9691-0

Bunge M, Sobjerg LS, Rotaru AE, Gauthier D, Lindhardt AT, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer RL: Formation of palladium (0) nanoparticles at microbial surfaces. Biotechnol Bioeng 2010, 107: 206–215. 10.1002/bit.22801

Wang RF, Wang H, Feng HQ, Ji S: Palladium decorated nickel nanoparticles supported on carbon for formic acid oxidation. Int J Electrochem Sci 2013, 8: 6068–6076.

Tobin JM, White C, Gadd GM: Metal accumulation by fungi: applications in environmental biotechnology. J Ind Microbiol 1994, 13: 126–130. 10.1007/BF01584110

Gumbart JC, Beeby M, Jensen GJ, Roux B: Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. Plos Comput Biol 2014, 10: 1003475. 10.1371/journal.pcbi.1003475

Nies DH: Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 2003, 27: 313–339. 10.1016/S0168-6445(03)00048-2

Hodgson L, Tarbell JM: Solute transport to the endothelial intercellular cleft: the effect of wall shear stress. Ann Biomedl Eng 2002, 30: 936–945. 10.1114/1.1507846

Silva-Santisteban BOY, Filho FM: Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus . Enzyme Microb Technol 2005, 36: 717–724. 10.1016/j.enzmictec.2004.12.008

Lantz J, Gardhagen R, Karlsson M: Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation. Med Eng Phys 2012, 34: 1139–1148. 10.1016/j.medengphy.2011.12.002

Allen JJ, Shockling MA, Kunkel GJ, Smits AJ: Turbulent flow in smooth and rough pipes. Phil Trans R Soc A 2007, 365: 699–714. 10.1098/rsta.2006.1939

Onishi R, Matsuda K, Takahashi K, Kurose R, Komori S: Retrieval of collision kernels from the change of droplet size distributions with linear inversion. Phys Scripta 2008, 2008: 014050. 10.1088/0031-8949/2008/T132/014050

Klaewkla R, Arend M, Hoelderich WF: A review of mass transfer controlling the reaction rate in heterogeneous catalytic systems. In de Mass Transfer-Advanced Aspects. InTech, Germany; 2011:668–684.

Evans JR, Davids WG, MacRae JD, Amirbahman A: Kinetics of cadmium uptake by chitosan-based crab shells. Water Res 2002, 36: 3219–3226. 10.1016/S0043-1354(02)00044-1

Ghadge RS, Patwardhan AW, Joshi JB: Combined effect of hydrodynamic and interfacial flow parameters on lysozyme deactivation in a stirred tank bioreactor. Biotechnol Prog 2006, 22: 660–672. 10.1021/bp050269s

Cherry RS, Papoutsakis ET: Hydrodynamic effects on cells in agitated tissue culture reactors. Bioproc Eng 1986, 1: 29–41. 10.1007/BF00369462