Ảnh hưởng của nhiệt độ nung đến hiệu suất tự làm sạch và quang xúc tác của gạch đất sét dưới ánh sáng nhìn thấy

Journal of the Australian Ceramic Society - Tập 57 - Trang 1397-1406 - 2021
Ahmet Yavas1, Saadet Guler1, Merve Torman Kayalar1, Mucahit Sutcu1, Mustafa Erol2,3, Osman Gencel4, Ali Yaras5, Ertugrul Erdogmus6
1Department of Materials Science and Engineering, Izmir Katip Celebi University, Izmir, Turkey
2Department of Metallurgical and Materials Engineering, Dokuz Eylul University, Izmir, Turkey
3Center for Fabrication and Application of Electronic Materials, Dokuz Eylul University, Izmir, Turkey
4Department of Civil Engineering, Bartın University, Bartın, Turkey
5Department of Metallurgical and Materials Engineering, Bartin University, Bartin, Turkey
6Department of Environmental Engineering, Bartın University, Bartın, Turkey

Tóm tắt

Trong nghiên cứu này, các đặc tính tự làm sạch và quang xúc tác của gạch đất sét nung ở các nhiệt độ khác nhau dưới ánh sáng nhìn thấy đã được xem xét. Trong khuôn khổ này, hiệu suất quang xúc tác cùng với các tính chất hấp phụ của gạch đất sét nung ở các nhiệt độ 900 °C, 1000 °C và 1100 °C đã được đánh giá bằng cách sử dụng máy quang phổ UV–vis. Dữ liệu thực nghiệm cho thấy gạch đất sét nung có khả năng tự làm sạch khi được quan sát có thể loại bỏ thuốc nhuộm methylene blue (MB) như một chất ô nhiễm hữu cơ. Hiệu suất tốt nhất về tổng hiệu quả phân hủy và tốc độ phản ứng biểu kiến của MB được ghi nhận từ gạch đất sét nung ở 900 °C với giá trị lần lượt là 90.57% và 0.3039 h−1. Ngoài ra, cũng đã được xác nhận rằng các thuộc tính vật lý thay đổi theo nhiệt độ nung có ảnh hưởng lớn đến khả năng loại bỏ MB cũng như hàm lượng chất bán dẫn trong gạch.

Từ khóa

#gạch đất sét #tự làm sạch #quang xúc tác #nhiệt độ nung #thuốc nhuộm methylene blue

Tài liệu tham khảo

Mishra, A., Mehta, A., Basu, S.: Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: a review. J. Environ. Chem. Eng. 6, 6088–6107 (2018). https://doi.org/10.1016/j.jece.2018.09.029 Macphee, D.E., Folli, A.: Photocatalytic concretes — the interface between photocatalysis and cement chemistry. Cem. Concr. Res. 85, 48–54 (2016). https://doi.org/10.1016/j.cemconres.2016.03.007 Diamanti, M.V., Luongo, N., Massari, S., Lupica Spagnolo, S., Daniotti, B., Pedeferri, M.P.: Durability of self-cleaning cement-based materials. Constr. Build. Mater. 280, 122442 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122442 Zhao, A., Yang, J., Yang, E.H.: Self-cleaning engineered cementitious composites. Cem. Concr. Compos. 64, 74–83 (2015). https://doi.org/10.1016/j.cemconcomp.2015.09.007 Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., Hasnain Isa, M.: Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J. Ind. Eng. Chem. 26, 1–36 (2015). https://doi.org/10.1016/j.jiec.2014.10.043 Miao, J., Zhang, R., Zhang, L.: Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2. Mater. Res. Bull. 97, 109–114 (2018). https://doi.org/10.1016/j.materresbull.2017.08.032 Hernández-Ramírez, A., Medina-Ramírez, I., Bustos, E., Manríquez, J., Peralta-Hernández, J.M.: Photocatalytic Semiconductors. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-10999-2 Pigeot-Rémy, S., Simonet, F., Errazuriz-Cerda, E., Lazzaroni, J.C., Atlan, D., Guillard, C.: Photocatalysis and disinfection of water: identification of potential bacterial targets. Appl. Catal. B Environ. 104, 390–398 (2011). https://doi.org/10.1016/j.apcatb.2011.03.001 Li, J., Wang, L., Han, C., Su, F., Leng, Y., Ye, L.: Industrial TiO2 based nacreous pigments as functional building materials: photocatalytic removal of NO. Chinese J. Chem. Eng. 28, 2587–2591 (2020). https://doi.org/10.1016/j.cjche.2020.05.029 Zhu, D., Zhou, Q.: Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ. Nanotechnology, Monit. Manag. 12, 100255 (2019). https://doi.org/10.1016/j.enmm.2019.100255 MacPhee, D.E., Folli, A.: Photocatalytic concretes - the interface between photocatalysis and cement chemistry. Cem. Concr. Res. 85, 48–54 (2016). https://doi.org/10.1016/j.cemconres.2016.03.007 Tobaldi, D.M., Graziani, L., Seabra, M.P., Hennetier, L., Ferreira, P., Quagliarini, E., Labrincha, J.A.: Functionalised exposed building materials: self-cleaning, photocatalytic and biofouling abilities. Ceram. Int. 43, 10316–10325 (2017). https://doi.org/10.1016/j.ceramint.2017.05.061 El Mragui, A., Zegaoui, O., Esteves da Silva, J.C.G.: Elucidation of the photocatalytic degradation mechanism of an azo dye under visible light in the presence of cobalt doped TiO2 nanomaterials. Chemosphere. 128931 (2020). https://doi.org/10.1016/j.chemosphere.2020.128931 Ehm, C., Stephan, D.: Journal of Photochemistry and Photobiology A : chemistry site resolved optical detection of photocatalysis on building materials. "Journal Photochem. Photobiol. A Chem. 366, 97–102 (2018). https://doi.org/10.1016/j.jphotochem.2018.01.020 Boonen, E., Beeldens, A., Dirkx, I., Bams, V.: Durability of cementitious photocatalytic building materials. Catal. Today. 287, 196–202 (2017). https://doi.org/10.1016/j.cattod.2016.10.012 Rastogi, M., Vaish, R.: Visible light induced water detoxification through Portland cement composites reinforced with photocatalytic filler: a leap away from TiO2. Constr. Build. Mater. 120, 364–372 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.114 Kaja, A.M., Brouwers, H.J.H., Yu, Q.L.: Cement and concrete research no x degradation by photocatalytic mortars : the underlying role of the CH and C-S-H carbonation. 125, (2019). https://doi.org/10.1016/j.cemconres.2019.105805 Janus, M., Zatorska, J., Zaj, K., Kusiak-nejman, E., Czy, A., Morawski, A.W.: Materials science & engineering B the mechanical and photocatalytic properties of modi fi ed gypsum materials. 237, 1–9 (2018). https://doi.org/10.1016/j.mseb.2018.11.015 Graziani, L., Quagliarini, E., Bondioli, F., D’Orazio, M.: Durability of self-cleaning TiO2 coatings on fired clay brick façades: effects of UV exposure and wet & dry cycles. Build. Environ. 71, 193–203 (2014). https://doi.org/10.1016/j.buildenv.2013.10.005 Ozturk, S., Sutcu, M., Erdogmus, E., Gencel, O.: Influence of tea waste concentration in the physical, mechanical and thermal properties of brick clay mixtures. Constr. Build. Mater. 217, 592–599 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.114 Sutcu, M., Alptekin, H., Erdogmus, E., Er, Y., Gencel, O.: Characteristics of fired clay bricks with waste marble powder addition as building materials. Constr. Build. Mater. 82, 1–8 (2015). https://doi.org/10.1016/j.conbuildmat.2015.02.055 Muñoz, P., Morales, M.P., Mendívil, M.A., Juárez, M.C., Muñoz, L.: Using of waste pomace from winery industry to improve thermal insulation of fired clay bricks. Eco-friendly way of building construction. 71, 181–187 (2014). https://doi.org/10.1016/j.conbuildmat.2014.08.027 Anjum, F., Naz, M.Y., Ghaffar, A., Shukrullah, S., AbdEl-Salam, N.M., Ibrahim, K.A.: Study of thermal and mechanical traits of organic waste incorporated fired clay porous material. Phys. B Condens. Matter. 599, 412479 (2020). https://doi.org/10.1016/j.physb.2020.412479 Görhan, G., Osman, S.: Porous clay bricks manufactured with rice husks. 40, 390–396 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.110 Belver, C., Bedia, J., Rodriguez, J.J.: Titania–clay heterostructures with solar photocatalytic applications. Appl. Catal. B Environ. 176–177, 278–287 (2015). https://doi.org/10.1016/j.apcatb.2015.04.004 Szczepanik, B.: Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: a review. Appl. Clay Sci. 141, 227–239 (2017). https://doi.org/10.1016/j.clay.2017.02.029 Ngoh, Y.S., Nawi, M.A.: Fabrication and properties of an immobilized P25TiO2-montmorillonite bilayer system for the synergistic photocatalytic-adsorption removal of methylene blue. Mater. Res. Bull. 76, 8–21 (2016). https://doi.org/10.1016/j.materresbull.2015.11.060 Andaloro, A., Mazzucchelli, E.S., Lucchini, A., Pedeferri, M.P.: Photocatalytic self-cleaning coatings for building facade maintenance. Performance analysis through a case-study application. J. Facade Des. Eng. 4, 115–129 (2017). https://doi.org/10.3233/FDE-160054 Graziani, L., D’Orazio, M.: Biofouling prevention of ancient brick surfaces by TiO 2 -based nano-coatings. Coatings 5, 357–365 (2015). https://doi.org/10.3390/coatings5030357 Vidaković, A.M., Ranogajec, J.G., Markov, S.L., Lončar, E.S., Hiršenberger, H.M., Sever Škapin, A.: Synergistic effect of the consolidant and the photocatalytic coating on antifungal activity of porous mineral substrates. J. Cult. Herit. 24, 1–8 (2017). https://doi.org/10.1016/j.culher.2016.11.005 Laplaza, A., Jimenez-Relinque, E., Campos, J., Castellote, M.: Photocatalytic behavior of colored mortars containing TiO2 and iron oxide based pigments. Constr. Build. Mater. 144, 300–310 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.146 Conshohocken, W.: Standard test methods for apparent porosity, liquid absorption, apparent specific gravity, and bulk density of refractory shapes by vacuum. Methods 93, 1–6 (2000) Tunç, I.D., Erol, M., Güneş, F., Sütçü, M.: Growth of ZnO nanowires on carbon fibers for photocatalytic degradation of methylene blue aqueous solutions: an investigation on the optimization of processing parameters through response surface methodology/central composite design. Ceram. Int. 46, 7459–7474 (2020). https://doi.org/10.1016/j.ceramint.2019.11.244 Yariv, S.: The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl. Clay Sci. 24, 225–236 (2004). https://doi.org/10.1016/j.clay.2003.04.002 Taha, Y., Benzaazoua, M., Hakkou, R., Mansori, M.: Natural clay substitution by calamine processing wastes to manufacture fired bricks. J. Clean. Prod. 135, (2016). https://doi.org/10.1016/j.jclepro.2016.06.200 Pérez-Villarejo, L., Martínez-Martínez, S., Carrasco-Hurtado, B., Eliche-Quesada, D., Ureña-Nieto, C., Sánchez-Soto, P.J.: Valorization and inertization of galvanic sludge waste in clay bricks. Appl. Clay Sci. 105–106, (2015). https://doi.org/10.1016/j.clay.2014.12.022 Sutcu, M.: Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks. Ceram. Int. 41, 2819–2827 (2015). https://doi.org/10.1016/j.ceramint.2014.10.102 Lubis, S.: Sheilatina, Murisna: synthesis, characterization and photocatalytic activity of α-Fe2O3/bentonite composite prepared by mechanical milling. J. Phys. Conf. Ser. 1116, 042016 (2018). https://doi.org/10.1088/1742-6596/1116/4/042016 Jimenez-Relinque, E., Llorente, I., Castellote, M.: TiO2 cement-based materials: Understanding optical properties and electronic band structure of complex matrices. Catal. Today. 287, 203–209 (2017). https://doi.org/10.1016/j.cattod.2016.11.015 Prakash, K., Karuthapandian, S., Senthilkumar, S.: Zeolite nanorods decorated g-C3N4 nanosheets: a novel platform for the photodegradation of hazardous water contaminants. Mater. Chem. Phys. 221, 34–46 (2019). https://doi.org/10.1016/j.matchemphys.2018.09.026 Demirci, S., Dikici, T., Yurddaskal, M., Gultekin, S., Toparli, M., Celik, E.: Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Appl. Surf. Sci. 390, 591–601 (2016). https://doi.org/10.1016/j.apsusc.2016.08.145 Mei, Q., Zhang, F., Wang, N., Yang, Y., Wu, R., Wang, W.: TiO2/Fe2O3 heterostructures with enhanced photocatalytic reduction of Cr(vi) under visible light irradiation. RSC Adv. 9, 22764–22771 (2019). https://doi.org/10.1039/c9ra03531a Valášková, M., Tokarský, J., Pavlovský, J., Prostějovský, T., Kočí, K.: α-Fe2O3 nanoparticles/vermiculite clay material: structural, optical and photocatalytic properties. Materials (Basel). 12, 1–16 (2019). https://doi.org/10.3390/ma12111880 Erol, M., Ertugrul, O.: HIPed TiO2 dense pellets with improved photocatalytic performance. Ceram. Int. 44, 2991–2999 (2018). https://doi.org/10.1016/j.ceramint.2017.11.053 Hou, Y., Zheng, H., Ding, Z., Wu, L.: Effects of sintering temperature on physicochemical properties and photocatalytic activity of titanate nanotubes modified with sulfuric acid. Powder Technol. 214, 451–457 (2011). https://doi.org/10.1016/j.powtec.2011.08.048 Shandilya, P., Mittal, D., Sudhaik, A., Soni, M., Raizada, P., Saini, A.K., Singh, P.: GdVO4 modified fluorine doped graphene nanosheets as dispersed photocatalyst for mitigation of phenolic compounds in aqueous environment and bacterial disinfection. Sep. Purif. Technol. 210, 804–816 (2019). https://doi.org/10.1016/j.seppur.2018.08.077 Raizada, P., Singh, P., Kumar, A., Sharma, G., Pare, B., Jonnalagadda, S.B., Thakur, P.: Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: role of adsorption in dye degradation. Appl. Catal. A Gen. 486, 159–169 (2014). https://doi.org/10.1016/j.apcata.2014.08.043