Effect of dynamic stress state perturbation on irreversible strain accumulation at interfaces in block-structured media

A. S. Grigoriev1, Evgeny V. Shilko1,2, С. В. Астафуров1,2, Andrey V. Dimaki1,3,2, E Vysotsky4, S. G. Psakhie1,3,2
1Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
2National Research Tomsk State University, Tomsk, Russia
3National Research Tomsk Polytechnic University, Tomsk, Russia
4VS. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sadovskiy, M.A., Distribution of Preferential Sizes in Solids, Trans. USSR Acad. Sci. Earth Sci. Ser., 1983, vol. 269, pp. 8–11.

Kocharyan, G.G. and Spivak, A.A., Deformation Dynamics of Block-Structured Rock Masses, Moscow: Akademkniga, 2003.

Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Keilis-Borok, V. and Soloviev, A.A., Eds., Berlin: Springer-Verlag, 2003.

Makarov, P.V., Smolin, I.Yu., Stefanov, Yu.P., Kuznetsov, P.V., Trubitsyn, A.A., Trubitsyna, N.V., and Voroshilov, S.P., Nonlinear Mechanics of Geomateirals and Geomedia, Novosibirsk: Izd-vo Geo, 2007.

van der Pluijm, B.A. and Marshak, S., Earth Structure: An Introduction to Structural Geology and Tectonics, New York: WW Norton & Company Ltd, 2004.

Dobretsov, N.L., Psakhie, S.G., Ruzhich, V.V., Popov, V.L., Shil’ko, E.V., Granin, N.G., Timofeev, V.Yu., Astafurov, S.V., Dimaki, A.V., and Starchevich, Ya., Ice Cover of Lake Baikal as a Model for Studying Tectonic Processes in the Earth’s Crust, Dokl. Earth Sci., 2007, vol. 413, no. 2, pp. 155–159.

Ben-Zion, Y. and Sammis, C.G., Characterization of Fault Zones, Pure Appl. Geophys., 2003, vol. 160, pp. 677–715.

Davatzes, N.C., Eichhubl, P., and Aydin, A., Structural Evolution of Fault Zones in Sandstone by Multiple Deformation Mechanisms: Moab Fault, Southeast Utah, Geol. Soc. Am. Bull., 2005, vol. 117, no. 1-2, pp. 135–148.

Finzi, Y., Hearn, E.H., Ben-Zion, Y., and Lyakhovsky, V., Structural Properties and Deformation Patterns of Evolving Strike-Slip Faults: Numerical Simulations Incorporating Damage Rheology, Pure Appl. Geophys., 2009, vol. 166, pp. 1537–1573.

Sagy, A., Brodsky, E.E., and Axen, G.J., Evolution of Fault Surface Roughness with Slip, Geology, 2007, vol. 35, no. 3, pp. 283–286.

Kocharyan, G.G., Kishkina, S.B., and Ostapchuk, A.A., Seismic Picture of a Fault Zone. What Can Be Gained from the Analysis of Fine Patterns of Spatial Distribution of Weak Earthquake Centers? Geodyn. Tectonophys., 2010, vol. 1, no. 4, pp. 419–440.

Seminsky, K.Zh., Internal Structure of Fault Zones: Spatial and Temporal Evolution Studies on Clay Models, Geodyn. Tectonophys., 2012, vol. 3, no. 3, pp. 183–194.

Psakhie, S.G., Dobretsov, N.L., Shilko, E.V., Astafurov, S.V., Dimaki, A.V., and Ruzhich, V.V., Model Study of the Formation of Deformation-Induced Structures of Subduction Type in Block-Structured Media. Ice Cover of Lake Baikal as a Model Medium, Tectonophysics, 2009, vol. 465, pp. 204–211.

Marone, C., Laboratory-Derived Friction Laws and Their Application to Seismic Faulting, Ann. Rev. Earth Planet. Sci., 1998, no. 26, pp. 643–696.

Kocharyan, G.G., Kostyuchenko, V.N., and Pavlov, D.V., Initiation of Deformation Processes in the Earth’s Crust by Small Perturbations, Phys. Mesomech., 2004, vol. 7, no. 1-2, pp. 5–21.

Kocharyan, G.G., Kulyukin, A.A., Markov, V.K., Markov, D.V., and Pavlov, D.V., Small Disturbances and Stress-Strain State of the Earth’s Crust, Phys. Mesomech., 2005, vol. 8, no. 1-2, pp. 21–33.

Rodionov, V.N., Sizov, I.A., and Tsvetkov, V.M., Fundamentals of Geomechanics, Moscow: Izd-vo Nedra, 1986.

Sherman, S.I. and Gorbunova, E.A., Variations and Origin of Fault Activity of Baikal Rift System and Adjacent Territories in Real Time, Earth Sci. Front., 2008, vol. 15, no. 3, pp. 337–347.

Psakhie, S.G., Ruzhich, V.V., Shilko, E.V., Popov, V.L., Dimaki, A.V., Astafurov, S.V., and Lopatin, V.V., Influence of the State of Interfaces on the Character of Local Displacements in Fault-Block and Interfacial Media, Tech. Phys. Lett., 2005, vol. 31, no. 8, pp. 712–715.

Churikov, V.A. and Kuzmin, Yu.O., Relation between Deformation and Seismicity in the Active Fault Zone of Kamchatka, Russia, Geophys. J. Int., 1998, vol. 133, pp. 607614.

Psakhie, S.G., Ruzhich, V.V., Shilko, E.V., Popov, V.L., and Astafurov, S.V., A New Way to Manage Displacements in Zones of Active Faults, Tribol. Int., 2007, vol. 40, pp. 995–1003.

Dieterich, J.H. and Kilgore, B., Implications of Fault Constitutive Properties for Earthquake Prediction, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 3787–3794.

McGarr, A. and Fletcher, J., Maximum Slip in Earthquake Fault Zones, Apparent Stress, and Stick-Slip Friction, Bull. Seismol. Soc. Am., 2003, vol. 93, pp. 2355–2362.

Filippov, A.E., Popov, V.L., Psakhie, S.G., Ruzhich, V.V., and Shilko, E.V., Converting Displacement Dynamics into Creep in Block Media, Tech. Phys. Lett., 2006, vol. 32, no. 6, pp. 545–549.

Ferdowsi, B., Griffa, M., Guyer, R.A., Johnson, P.A., Marone, C., and Carmeliet, J., Microslips as Precursors of PHYSICAL MESOMECHANICS Vol. 19 No. 2 2016 Large Slip Events in the Stick-Slip Dynamics in Sheared Granular Layers: A Discrete Element Model Analysis, Geophys. Res. Lett., 2013, vol. 40, pp. 4194–4998.

Kocharyan, G.G., Fault Zone as a Nonlinear Mechanical System, Fiz. Mezomekh., 2010, vol. 13, spec. iss., pp. 5–17.

Chen, Q. and Freymueller, G.T., Geodetic Evidence for a Near-Fault Compliant Zone along San Andreas Fault in the San Francisco Bay Area, Bull. Seismol. Soc. Am., 2002, vol. 92, no. 2, pp. 656–671.

Kuzmin, Yu.O., Recent Geodynamics ofthe Faults and Paradoxes of the Rates of Deformation, Izv. Phys. Solid Earth, 2013, vol. 49, no. 5, pp. 626–642.

Kuzmin, Yu.O., Recent Geodynamics of Fault Zones: Faulting in Real Time Scale, Geodyn. Tectonophys., 2014, vol. 5, no. 2, pp. 401–443.

Kocharyan, G.G., Kulyukin, A.A., and Pavlov, D.V., Role of Nonlinear Effects in the Mechanics of Perturbation Accumulation, Fiz. Mezomekh., 2006, vol. 9, no. 1, pp. 5–14.

Kocharyan, G.G., Kulyukin, A.A., and Pavlov, D.V., Specific Dynamics of Interblock Deformation in the Earth’s Crust, Geol. Geophys., 2006, vol. 47, no. 5, pp. 667–681.

Melosh, H.J., Acoustic Fluidization: A New Geological Process, J. Geophys. Res., 1979, vol. 84, pp. 7513–7520.

Melosh, H.J., Dynamical Weakening of Faults by Acoustic Fluidization, Nature, 1996, vol. 379, pp. 601–606.

Ruzhich, V.V., Truskov V.A., Chernykh, E.N., and Smekalin, O.P., Present-Day Motion in Zones of Pribaikalie and Their Initiation Mechanisms, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 360–372.

Gomberg, J., Bodin, P., and Reasenberg, P., Observing Earthquakes Triggered in the Near Field by Dynamic Deformations, Bull. Seismol. Soc. Am., 2003, vol. 93, pp. 118–138.

Johnson, P.A., Carpenter, B., Knuth, M., Kaproth, B.M., Le Bas, P.-Y., Daub, E.G., and Marone, C., Nonlinear Dynamical Triggering of Slow Slip on Simulated Earthquake Faults with Implications to Earth, J. Geophys. Res. B, 2012, vol. 117, pp. 04310(1-9).

Kostic, S., Franovic, I., Perc, M., Vasovic, N., and Todorovic, K., Triggered Dynamics in a Model of Different Fault Creep Regime, Sci. Rep., 2014, vol. 4, pp. 5401(1-7).

Johnson, P.A. and Jia, X., Nonlinear Dynamics, Granular Media and Dynamic Earthquake Triggering, Nature, 2005, vol. 437, pp. 871–874.

Duan, B., Kang, J., and Li, Y.-G., Deformation of Compliant Fault Zones Induced by Nearby Earthquakes: Theoretical Investigations in Two Dimensions, J. Geophys. Res. B, 2011, vol. 116, pp. 03307–1.03307-22.

Psakhie, S.G., Ruzhich, V.V., Shilko, E.V., Popov, V.L., Dimaki, A.V., Astafurov, S.V., and Lopatin, V.V., Influence of the State of Interfaces on the Character of Local Displacements in Fault-Block and Interfacial Media, Tech. Phys. Lett., 2005, vol. 31, no. 8, pp. 712–715.

Hearn, E.H. and Fialko, Y., Can Compliant Fault Zones Be Used to Measure Absolute Stresses in the Upper Crust? J. Geophys. Res. B, 2009, vol. 114, pp. 04403–1.04403-18.

Astafurov, S.V., Shilko, E.V., Ruzhich, V.V., and Psakhie, S.G., Effect of Local Stress on the Interface Response to Dynamic Loading in Faulted Crust, Geol. Geophys., 2008, vol. 49, no. 1, pp. 52–58.

Shilko, E.V., Astafurov, S.V., Ruzhich, V.V., and Psakhie, S.G., On the Feasibility of Shear Stress Estimation at Interfaces of Block-Structured Medium, Phys. Mesomech., 2010, vol. 13, no. 1-2, pp. 21–27.

Psakhie, S.G., Shilko, E.V., Grigoriev, A.S., Astafurov, S.V., Dimaki, A.V., and Smolin, A.Yu., A Mathematical Model of Particle-Particle Interaction for Discrete Element Based Modeling of Deformation and Fracture of Heterogeneous Elastic-Plastic Materials, Eng. Fract. Mech., 2014, vol. 130, pp. 96–115.

Shilko, E.V., Psakhie, S.G., Schmauder, S., Popov, V.L., Astafurov, S.V., and Smolin, A.Yu., Overcoming the Limitations of Distinct Element Method for Multiscale Modeling of Materials with Multimodal Internal Structure, Comp. Mater. Sci., 2015, vol. 102, pp. 267–285.

Lin, W., Mechanical Properties of Mesaverde Sandstone and Shale at High Pressures: Technical Report UCRL-53419, Lawrence Livermore National Laboratory, University of California, 1983.

Labuz, J.F., Dai, S.-T., and Papamichos, E., Plane-Strain Compression of Rock-Like Materials, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1996, vol. 33, pp. 573–584.

Mustoe, G.G.W., A Generalized Formulation of the Discrete Element Method, Eng. Comput., 1992, vol. 9, pp. 181–190.

Bicanic, N., Discrete Element Methods, Encyclopedia of Computational Mechanics. V. 1: Fundamentals, Stein, E., Borst, R., and Hughes, T.J.R., Eds., Chichester: Wiley, 2004, pp. 311–337.

Jing, L. and Stephansson, O., Fundamentals of Discrete Element Methods for Rock Engineering, Amsterdam: Elsevier, 2007.

Astafurov, S.V., Shilko, E.V., Andreev, A.V., and Psakhie, S.G., Effect of Compression Nonequiaxialty on Shear-Induced Dilatation in a Block-Structured Medium, Phys. Mesomech., 2012, vol. 15, no. 1-2, pp. 80–87.

Psakhie, S., Ovcharenko, V., Baohai, Yu., Shilko, E., Astafurov, S., Ivanov, Yu., Byeli, A., and Mokhovikov, A., Influence of Features of Interphase Boundaries on Mechanical Properties and Fracture Pattern in Metal-Ceramic Composites, J. Mater. Sci. Technol., 2013, vol. 29, no. 11, pp.1025–1034.

Constitutive Modeling of Geomaterials, Yang, Q., Zhang, J.-M., Zheng, H., and Yao, Y., Eds., Berlin: Springer-Verlag, 2013.

Yu, M.-H., Ma, G.-W., Qiang, H.-F., and Zhang, Y. Q. Generalized Plasticity, Berlin: Springer-Verlag, 2006.

Zhou, H., Jia, Y., and Shao, J.F. A Unified Elastic-Plastic and Viscoplastic Damage Model for Quasi-Brittle Rocks, Int. J. Rock Mech. Min. Sci., 2008, vol. 45, pp. 12371251.

Makarov, P.V., Mathematical Theory of Evolution of Loaded Solids and Media, Phys. Mesomech., 2008, vol. 11, no. 5-6, pp. 213–227.

Garagash, I.A. and Nikolaevsky, V.N., Nonassociated Rules of Flow and Plastic Strain Localization, Usp. Mekh., 1989, vol. 12, no. 1, pp. 131–183.

Stefanov, Yu.P., Deformation Localization and Fracture in Geomaterials. Numerical Simulation, Phys. Mesomech., 2002, vol. 5, no. 5-6, pp. 67–77.

Nur, A., A Note on the Constitutive Law for Dilatancy, Pure Appl. Geophys., 1975, vol. 113, pp. 197–206.

Ruina, A., Slip Instability and State Variable Friction Laws, J. Geophys. Res., 1983, vol. 88, pp. 10359–10370.

Perrin, G., Rice, J., and Zheng, G., Self-Healing Slip Pulse on a Frictional Surface, J. Mech. Phys. Solids, 1995, vol. 43, pp. 1461–1495.