Effect of doped TiO2 film as electron transport layer for inverted organic solar cell

Materials Science for Energy Technologies - Tập 2 - Trang 385-388 - 2019
A. Ranjitha1, M. Thambidurai2, Foo Shini3, N. Muthukumarasamy4, Dhayalan Velauthapillai5
1Department of Physics, Kongunadu Arts and Science College, India
2LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
3School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
4Department of Physics, Coimbatore Institute of Technology, India
5Western Norway University of Applied Sciences, Department of Computing, Mathematics and Physics, Bergen, Norway

Tài liệu tham khảo

Steim, 2010, Interface materials for organic solar cells, J. Mater. Chem., 20, 2499, 10.1039/b921624c Oh, 2011, Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells, Sol. Energy Mater. Sol. Cells, 95, 2194, 10.1016/j.solmat.2011.03.023 Lockinger, 2018, TiO2 as intermediate buffer layer in Cu(In, Ga)Se2 solar cells, Sol. Energy Mater. Sol. Cells, 174, 397, 10.1016/j.solmat.2017.09.030 Salim, 2011, Solution-processed Nanocrystalline TiO2 Buffer layer used for improving the performance of organic photovoltaics, ACS Appl. Mater. Interfaces, 3, 1063, 10.1021/am101202k Wang, 2016, Inverted organic photovoltaic cells, Chem. Soc. Rev., 45, 2937, 10.1039/C5CS00831J Shetty, 2018, Effect of TiO2 on electrocatalytic behaviour of Ni-Mo alloy coating for hydrogen energy, Mater. Sci. Energy Technol., 1, 97 Solaiyammal, 2019, Green synthesis of Au and the impact of Au on the efficiency of TiO2 based dye sensitized solar cell, Mater. Sci. Energy Technol., 2, 171 Mishra, 2018, Electrode materials for lithium-ion batteries, Materials Science for, Energy Technol., 1, 182 Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004 Liao, 2007, Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants, J. Photochem. Photobiol. A: Chem., 187, 363, 10.1016/j.jphotochem.2006.11.003 Shankar, 2008, Highly efficient solar cells using TiO2 nanotube arrays sensitized witha donor-antenna dye, Nano Lett., 8, 1654, 10.1021/nl080421v Kuang, 2008, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells, ACS Nano, 2, 1113, 10.1021/nn800174y Kim, 2009, Fabrication and electrochemical characterisation of TiO2 three-dimensional nanonetwork based on pepetide assembly, ACS Nano, 3, 1085, 10.1021/nn900062q Gholamkhass, 2012, An efficient inverted organic solar cell with improved ZnO gold contact layers, Org. Electron., 13, 945, 10.1016/j.orgel.2012.02.012 Thambidurai, 2014, Nanocrystalline Ga-doped ZnO thin films for inverted polymer solar cells, Solar Energy, 106, 95, 10.1016/j.solener.2013.12.009 Thambidurai, 2014, Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer, Renewable Energy, 66, 433, 10.1016/j.renene.2013.12.031 Hashimi, 2018, Rutile TiO2 films as electron transport layer in inverted organic solar cell, J. Mater.Sc.:Mater. Electron., 29, 7152 Ranjitha, 2014, Inverted organic solar cells based on Cd-doped TiO2 as an electron extraction layer, Superlattices Microstruct., 74, 114, 10.1016/j.spmi.2014.05.040 Zimmermann, 2009, Longterm stability of efficient inverted P3HT:PCBM solar cells, Solar Energy Mater. Solar Cells, 93, 491, 10.1016/j.solmat.2008.12.022 Hsieh, 2010, Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer, J. Am. Chem. Soc., 132, 48874893, 10.1021/ja100236b Park, 2009, Doping of the metal oxide nanostructure and its influence in organic electronics, Adv. Funct. Mater., 19, 1241, 10.1002/adfm.200801639 Alparslan, 2011, TiO2-Based organic hybrid solar cells with Mn+2 doping, Int. J. Photoenergy, 10.1155/2011/734618 Ling, 2011, Sn-doped hematite nanostructures for photoelectrochemical water splitting, Nano Lett., 11, 2119, 10.1021/nl200708y Xin, 2009, Preparation of nanocrystalline Sn-TiO2-X via a rapid and simple stannous chemical reducing route, App. Surf. Sci., 255, 5896, 10.1016/j.apsusc.2009.01.027 Sayılkan, 2008, Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights, Mater. Res. Bull., 43, 127, 10.1016/j.materresbull.2007.02.012 Vinodgopal, 1996, Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behaviour of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye, Chem. Mater., 8, 2180, 10.1021/cm950425y Pan, 2011, SnO2-TiO2 core-shell nanowire structures: investigations on solid state reactivity and photocatalytic behaviour, J. Phy. Chem. C, 115, 17265, 10.1021/jp201901b Govindasamy, 2016, Investigations on the synthesis, optical and electrical properties of TiO2 thin films by chemical bath deposition (CBD) method, Mater. Res., 19, 413, 10.1590/1980-5373-MR-2015-0411 Singh, 2013, Effect of Pd and Au sensitization of bath deposited flowerlike TiO2 thin films on CO sensing and photocatalytic properties, J. Chem., 2013, 1 Thambidurai, 2012, Structural, optical, and electrical properties of cobalt-doped CdS quantum dots, J. Electron. Mater., 41, 665, 10.1007/s11664-012-1900-5