Effect of doped TiO2 film as electron transport layer for inverted organic solar cell
Tài liệu tham khảo
Steim, 2010, Interface materials for organic solar cells, J. Mater. Chem., 20, 2499, 10.1039/b921624c
Oh, 2011, Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells, Sol. Energy Mater. Sol. Cells, 95, 2194, 10.1016/j.solmat.2011.03.023
Lockinger, 2018, TiO2 as intermediate buffer layer in Cu(In, Ga)Se2 solar cells, Sol. Energy Mater. Sol. Cells, 174, 397, 10.1016/j.solmat.2017.09.030
Salim, 2011, Solution-processed Nanocrystalline TiO2 Buffer layer used for improving the performance of organic photovoltaics, ACS Appl. Mater. Interfaces, 3, 1063, 10.1021/am101202k
Wang, 2016, Inverted organic photovoltaic cells, Chem. Soc. Rev., 45, 2937, 10.1039/C5CS00831J
Shetty, 2018, Effect of TiO2 on electrocatalytic behaviour of Ni-Mo alloy coating for hydrogen energy, Mater. Sci. Energy Technol., 1, 97
Solaiyammal, 2019, Green synthesis of Au and the impact of Au on the efficiency of TiO2 based dye sensitized solar cell, Mater. Sci. Energy Technol., 2, 171
Mishra, 2018, Electrode materials for lithium-ion batteries, Materials Science for, Energy Technol., 1, 182
Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004
Liao, 2007, Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants, J. Photochem. Photobiol. A: Chem., 187, 363, 10.1016/j.jphotochem.2006.11.003
Shankar, 2008, Highly efficient solar cells using TiO2 nanotube arrays sensitized witha donor-antenna dye, Nano Lett., 8, 1654, 10.1021/nl080421v
Kuang, 2008, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells, ACS Nano, 2, 1113, 10.1021/nn800174y
Kim, 2009, Fabrication and electrochemical characterisation of TiO2 three-dimensional nanonetwork based on pepetide assembly, ACS Nano, 3, 1085, 10.1021/nn900062q
Gholamkhass, 2012, An efficient inverted organic solar cell with improved ZnO gold contact layers, Org. Electron., 13, 945, 10.1016/j.orgel.2012.02.012
Thambidurai, 2014, Nanocrystalline Ga-doped ZnO thin films for inverted polymer solar cells, Solar Energy, 106, 95, 10.1016/j.solener.2013.12.009
Thambidurai, 2014, Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer, Renewable Energy, 66, 433, 10.1016/j.renene.2013.12.031
Hashimi, 2018, Rutile TiO2 films as electron transport layer in inverted organic solar cell, J. Mater.Sc.:Mater. Electron., 29, 7152
Ranjitha, 2014, Inverted organic solar cells based on Cd-doped TiO2 as an electron extraction layer, Superlattices Microstruct., 74, 114, 10.1016/j.spmi.2014.05.040
Zimmermann, 2009, Longterm stability of efficient inverted P3HT:PCBM solar cells, Solar Energy Mater. Solar Cells, 93, 491, 10.1016/j.solmat.2008.12.022
Hsieh, 2010, Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer, J. Am. Chem. Soc., 132, 48874893, 10.1021/ja100236b
Park, 2009, Doping of the metal oxide nanostructure and its influence in organic electronics, Adv. Funct. Mater., 19, 1241, 10.1002/adfm.200801639
Alparslan, 2011, TiO2-Based organic hybrid solar cells with Mn+2 doping, Int. J. Photoenergy, 10.1155/2011/734618
Ling, 2011, Sn-doped hematite nanostructures for photoelectrochemical water splitting, Nano Lett., 11, 2119, 10.1021/nl200708y
Xin, 2009, Preparation of nanocrystalline Sn-TiO2-X via a rapid and simple stannous chemical reducing route, App. Surf. Sci., 255, 5896, 10.1016/j.apsusc.2009.01.027
Sayılkan, 2008, Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights, Mater. Res. Bull., 43, 127, 10.1016/j.materresbull.2007.02.012
Vinodgopal, 1996, Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behaviour of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye, Chem. Mater., 8, 2180, 10.1021/cm950425y
Pan, 2011, SnO2-TiO2 core-shell nanowire structures: investigations on solid state reactivity and photocatalytic behaviour, J. Phy. Chem. C, 115, 17265, 10.1021/jp201901b
Govindasamy, 2016, Investigations on the synthesis, optical and electrical properties of TiO2 thin films by chemical bath deposition (CBD) method, Mater. Res., 19, 413, 10.1590/1980-5373-MR-2015-0411
Singh, 2013, Effect of Pd and Au sensitization of bath deposited flowerlike TiO2 thin films on CO sensing and photocatalytic properties, J. Chem., 2013, 1
Thambidurai, 2012, Structural, optical, and electrical properties of cobalt-doped CdS quantum dots, J. Electron. Mater., 41, 665, 10.1007/s11664-012-1900-5