Effect of dispersion behavior on the heat transfer characteristics of alumina nanofluid: an experimental investigation and development of a new correlation function
Tóm tắt
Present work aims to study the dispersion characteristics of Al2O3 nano-dispersoid in water following different periods of ultrasonication and its impact on the thermal conductivity and viscosity of the nanofluid. Nanofluids with 0.5–2 vol% of Al2O3 nanoparticles have been prepared by ultrasonication for varying period. Al2O3 nanofluids reported a maximum thermal conductivity enhancement of 16.1% for 2 vol% of nanoparticle concentration, after an optimum ultrasonication of 2 h beyond which the thermal conductivity decreases with further ultrasonication. The optimum ultrasonication time required for uniform dispersion of nanoparticles increases with the increase in the Al2O3 volume fraction. For 1.5 vol% Al2O3 nanoparticle loading, the viscosity of nanofluid decreased by 33% with an increase in the sonication time from 30 to 90 min. Further increase in sonication time by 30 min resulted in 13% increase in the viscosity of Al2O3 nanofluid. This decrease in the thermal conductivity enhancement and increase in the viscosity beyond the optimum ultrasonication period have been attributed to the re-agglomeration of nanoparticles which are confirmed by TEM, and DLS results carried out after different instants of ultrasonication. The occurrence of re-agglomeration is explained in terms of the convective flow associated with the ultrasonication process. Various theoretical models like Maxwell or Hamilton–Crosser models which when used to predict the thermal conductivity of nanofluid, underestimate the thermal conductivity. A new correlation is, therefore, developed on the basis of experimental results. With an R2 value of 0.9924, the correlation showed a good agreement with the present thermal conductivity data.
Tài liệu tham khảo
Choi, S.U.S., Eastman, J.: Enhancing thermal conductivity of fluids with nanoparticles. In: International Mechanical Engineering Congress and Exposition, San Francisco, USA. pp. 99–105 (1995)
Li, D., Xie, W., Fang, W.: Preparation and properties of copper-oil-based nanofluids. Nanoscale Res. Lett. 6, 1–7 (2011)
Ghosh, M.M., Ghosh, S., Pabi, S.K.: On synthesis of a highly effective and stable silver nanofluid inspired by its multiscale modeling. Nanosci. Nanotechnol. Lett. 4, 843–848 (2012)
Moreira, L.M., Carvalho, E.A., Bell, M.J.V., Anjos, V., SantAna, A.C., Alves, A.P.P., Fragneaud, B., Sena, L.A., Archanjo, B.S., Achete, C.A.: Thermo-optical properties of silver and gold nanofluids. J. Therm. Anal. Calorim. 114, 557–564 (2013)
Aparna, Z., Michael, M.M., Pabi, S.K., Ghosh, S.: Diversity in thermal conductivity of aqueous Al2O3- and Ag-nanofluids measured by transient hot-wire and laser flash methods. Exp. Therm. Fluid Sci. 94, 231–245 (2018)
Yang, L., Hu, Y.: Toward TiO2 nanofluids—part 1: preparation and properties. Nanoscale Res. Lett. 12, 417 (2017)
Lee, S.W., Park, S.D., Kang, S., Bang, I.C., Kim, J.H.: Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int. J. Heat Mass Transf. 54, 433–438 (2011)
Zhu, H., Zhang, C., Liu, S., Tang, Y., Yin, Y.: Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl. Phys. Lett. 89, 023123 (2006)
Liu, D., Zhou, Y., Yang, Y., Zhang, L., Jin, F.: Characterization of high performance AIN nanoparticle-based transformer oil nanofluids IEEE Trans. Dielectr. Electr. Insul. 23, 2757–2767 (2016)
Michael, M., Zagabathuni, A., Ghosh, S., Pabi, S.K.: Thermo-physical properties of pure ethylene glycol and water–ethylene glycol mixture-based boron nitride nanofluids. J. Therm. Anal. Calorim. 137, 369–380 (2019)
Soltanimehr, M., Afrand, M.: Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl. Therm. Eng. 105, 716–723 (2016)
Yang, B., Han, Z.H.: Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl. Phys. Lett. 89, 083111 (2006)
Peng, Z., Joshi, J.B., Moghtaderi, B., Khan, M.S., Evans, G.M., Doroodchi, E.: Segregation and dispersion of binary solids in liquid fluidised beds: a CFD-DEM study. Chem. Eng. Sci. 152, 65–83 (2016)
Khan, M.S., Mitra, S., Ghatage, S.V., Doroodchi, E., Joshi, J.B., Evans, G.M.: Segregation and dispersion studies in binary solid-liquid fluidised beds: a theoretical and computational study. Powder Technol. 314, 400–411 (2017)
Arifuzzaman, S.M., Biswas, P., Mehedi, M.F.U., Al-Mamun, A., Ahmmed, S.F., Khan, M.S.: Analysis of unsteady boundary layer viscoelastic nanofluid flow through a vertical porous plate with thermal radiation and periodic magnetic field. J. Nanofluids 7, 1122–1129 (2018)
Arifuzzaman, S.M., Khan, M.S., Mehedi, M.F.U., Rana, B.M.J., Ahmmed, S.F.: Chemically reactive and naturally convective high speed MHD fluid flow through an oscillatory vertical porous plate with heat and radiation absorption effect. Eng. Sci. Technol. Int. J. 21, 215–228 (2018)
Arifuzzaman, S.M., Uddin Mehedi, M.F., Al-Mamun, A., Biswas, P., Islam, M.R., Khan, M.S.: Magnetohydrodynamic micropolar fluid flow in presence of nanoparticles through porous plate: a numerical study. Int. J. Heat Technol. 36, 936–948 (2018)
Khan, M.S., Evans, G.M., Nguyen, A.V., Mitra, S.: Analysis of particle dispersion coefficient in solid–liquid fluidised beds. Powder Technol. 365, 60–73 (2020)
Arifuzzaman, S.M., Khan, M.S., Al-Mamun, A., Reza-E-Rabbi, S., Biswas, P., Karim, I.: Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through porous plate with chemical reaction. J. King Saud Univ. Sci. 31, 1388–1398 (2019)
Mahbubul, I.M., Elcioglu, E.B., Amalina, M.A., Saidur, R.: Stability, thermophysical properties and performance assessment of alumina–water nanofluid with emphasis on ultrasonication and storage period. Powder Technol. 345, 668–675 (2019)
Afzal, A., Khan, S.A., Ahamed Saleel, C.: Role of ultrasonication duration and surfactant on characteristics of ZnO and CuO nanofluids. Mater. Express 6, 1150d8 (1150d)
Afzal, A., Nawfal, I., Mahbubul, I.M., Kumbar, S.S.: An overview on the effect of ultrasonication duration on different properties of nanofluids. J. Therm. Anal. Calorim. 135, 393–418 (2019)
Rajendiran, G., Kuppusamy, V.B., Shanmugasundaram, S.: Experimental investigation of the effects of sonication time and volume concentration on the performance of PVT solar collector. IET Renew. Power Gener. 12, 1375–1381 (2018)
Shah, J., Ranjan, M., Gupta, S.K., Sonvane, Y.: Ultrasonication effect on thermophysical properties of Al2O3 nanofluids. AIP Conf. Proc. 1951, 1–4 (2018)
Mahbubul, I.M., Elcioglu, E.B., Saidur, R., Amalina, M.A.: Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason. Sonochem. 37, 360–367 (2017)
Su, Y., Gong, L., Chen, D.: Dispersion stability and thermophysical properties of environmentally friendly graphite oil-based nanofluids used in machining Introduction. Res. Artic. Adv. Mech. Eng. 8, 1–11 (2016)
Garg, P., Alvarado, J.L., Marsh, C., Carlson, T.A., Kessler, D.A., Annamalai, K.: An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int. J. Heat Mass Transf. 52, 5090–5101 (2009)
Nguyen, V.S., Rouxel, D., Hadji, R., Vincent, B., Fort, Y.: Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason. Sonochem. 18, 382–388 (2011)
Ruan, B., Jacobi, A.M.: Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res. Lett. 7, 1–11 (2012)
Sonawane, S.S., Khedkar, R.S., Wasewar, K.L.: Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons. J. Exp. Nanosci. 10, 310–322 (2015)
Asadi, A., Asadi, M., Siahmargoi, M., Asadi, T., Gholami Andarati, M.: The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: an experimental investigation. Int. J. Heat Mass Transf. 108, 191–198 (2017)
Li, F., Li, L., Zhong, G., Zhai, Y., Li, Z.: Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids. Int. J. Heat Mass Transf. 129, 278–286 (2019)
Buonomo, B., Manca, O., Marinelli, L., Nardini, S.: Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl. Therm. Eng. 91, 181–190 (2015)
Chen, Z., Shahsavar, A., Al-Rashed, A.A.A.A., Afrand, M.: The impact of sonication and stirring durations on the thermal conductivity of alumina-liquid paraffin nanofluid: an experimental assessment. Powder Technol. 360, 1134–1142 (2019)
Shahsavar, A., Salimpour, M.R., Saghafian, M., Shafii, M.B.: An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim. Acta 617, 102–110 (2015)
Xian, H.W., Sidik, N.A.C., Saidur, R.: Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int. Commun. Heat Mass Transf. 110, 104389 (2020)
Murshed, S.M.S., Leong, K.C., Yang, C.: Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 47, 560–568 (2008)
Ravikumar, S.V., Haldar, K., Jha, J.M., Chakraborty, S., Sarkar, I., Pal, S.K., Chakraborty, S.: Heat transfer enhancement using air-atomized spray cooling with water-Al2O3 nanofluid. Int. J. Therm. Sci. 96, 85–93 (2015)
Das, P.K., Islam, N., Santra, A.K., Ganguly, R.: Experimental investigation of thermophysical properties of Al2O3–water nanofluid: role of surfactants. J. Mol. Liq. 237, 304–312 (2017)
Xia, G., Jiang, H., Liu, R., Zhai, Y.: Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int. J. Therm. Sci. 84, 118–124 (2014)
Mingzheng, Z., Guodong, X., Jian, L., Lei, C., Lijun, Z.: Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp. Therm. Fluid Sci. 36, 22–29 (2012)
Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)
Garg, J., Poudel, B., Chiesa, M., Gordon, J.B., Ma, J.J., Wang, J.B., Ren, Z.F., Kang, Y.T., Ohtani, H., Nanda, J., McKinley, G.H., Chen, G.: Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J. Appl. Phys. 103, 074301 (2008)
Kole, M., Dey, T.K.: Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids. Int. J. Therm. Sci. 62, 61–70 (2012)
Enomoto, N., Maruyama, S., Nakagawa, Z.: Agglomeration of silica spheres under ultrasonication Naoya. J. Mater. Res. 12, 1410–1415 (1997)
Suganthi, K.S., Rajan, K.S.: Temperature induced changes in ZnO-water nanofluid: zeta potential, size distribution and viscosity profiles. Int. J. Heat Mass Transf. 55, 7969–7980 (2012)
Sergis, A., Hardalupas, Y.: Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res. Lett. 6, 1–37 (2011)
Nwosu, P.N., Meyer, J., Sharifpur, M.: A review and parametric investigation into nanofluid viscosity models. J. Nanotechnol. Eng. Med. 5, 031008 (2014)
Bashirnezhad, K., Bazri, S., Safaei, M.R., Goodarzi, M., Dahari, M., Mahian, O., Dalkiliça, A.S., Wongwises, S.: Viscosity of nanofluids: a review of recent experimental studies. Int. Commun. Heat Mass Transf. 73, 114–123 (2016)
Khodabandeh, R., Jarahnejad, M., Haghighi, E.B., Nikkam, N., Palm, B., Toprak, M.S., Muhammed, M., Saleemi, M.: Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids. Rheol. Acta 54, 411–422 (2015)
Mahbubul, I.M., Chong, T.H., Khaleduzzaman, S.S., Shahrul, I.M., Saidur, R., Long, B.D., Amalina, M.A.: Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid. Ind. Eng. Chem. Res. 53, 6677–6684 (2014)
Roy, G.C., Nguyen, C.T., Doucet, D., Suiro, S., Mare, T.: Temperature dependent thermal conductivity of alumina based nanofluid. In: de Vahl Davis, G., Leonardi, E. (Eds.), Proceedings of the 13th International Heat Transfer Conference (Begell House), 4 (2006)
Esfe, M.H., Saedodin, S., Mahian, O., Wongwises, S.: Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. J. Therm. Anal. Calorim. 117, 675–681 (2014)
Mojarrad, M.S., Keshavarz, A., Ziabasharhagh, M., Raznahan, M.M.: Experimental investigation on heat transfer enhancement of alumina/water and alumina/water-ethylene glycol nanofluids in thermally developing laminar flow. Exp. Therm. Fluid Sci. 53, 111–118 (2014)
Pak, B.C., Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998)
Patel, H.E., Sundararajan, T., Das, S.K.: An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J. Nanopart. Res. 12, 1015–1031 (2010)
Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., Wu, Q.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 91, 4568–4572 (2002)
Mintsa, H.A., Roy, G., Nguyen, C.T., Doucet, D.: New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48, 363–371 (2009)
Zhang, X., Gu, H., Fujii, M.: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp. Therm. Fluid Sci. 31, 593–599 (2007)
Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7, 227–233 (2012)
Beck, M.P., Yuan, Y., Warrier, P., Teja, A.S.: The effect of particle size on the thermal conductivity of alumina nanofluids. J. Nanopart. Res. 11, 1129–1136 (2009)
Philip, J., Shima, P.D.: Thermal properties of nanofluids. Adv. Colloid Interface Sci. 183–184, 30–45 (2012)
James Clerk, M.: A treatise on electricity and magnetism. Claderon press, London (1881)
Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187–191 (1962)
Timofeeva, E.V., Gavrilov, A.N., McCloskey, J.M., Tolmachev, Y.V., Sprunt, S., Lopatina, L.M., Selinger, J.V.: Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76, 061203 (2007)
Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)
Maïga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G.: Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 35, 543–557 (2004)
Chen, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Lapkin, A.A., Bavykin, D.V.: Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technol. 183, 63–72 (2008)
Das, S.K., Choi, S.U.S., Patel, H.E.: Heat transfer in nanofluids—a review. Heat Transf. Eng. 27, 3–19 (2006)
Murshed, S.M.S., Leong, K.C., Yang, C.: Enhanced thermal conductivity of TiO2—water based nanofluids. Int. J. Therm. Sci. 44, 367–373 (2005)