Effect of dilution on laminar burning characteristics of H 2 /CO/CO 2 /air premixed flames with various hydrogen fractions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fayaz, 2012, An overview of hydrogen a vehicle fuel, Renew. Sust. Energy Rev., 16, 5511, 10.1016/j.rser.2012.06.012
Qazi, 2015, The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review, J. Clean. Prod., 104, 1, 10.1016/j.jclepro.2015.04.041
Wang, 2013, Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0MPa, Exp. Thermal Fluid Sci., 50, 90, 10.1016/j.expthermflusci.2013.05.008
Wang, 2012, Experimental study on factors affecting lean combustion limit of S.I engine fueled with compressed natural gas and hydrogen blends, Energy, 38, 58, 10.1016/j.energy.2011.12.042
Zhang, 2010, Fuel combustion test in constant volume combustion chamber with built-in adaptor, Sci. China Technol. Sci., 53, 1000, 10.1007/s11431-009-0407-7
Kishore, 2008, Measurements of adiabatic burning velocity in natural gas-like mixtures, Exp. Thermal Fluid Sci., 33, 10, 10.1016/j.expthermflusci.2008.06.001
Burluka, 2010, Laminar burning velocities of three C3H6O isomers at atmospheric pressure, Fuel, 89, 2864, 10.1016/j.fuel.2010.02.004
Li, 2013, Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol–air mixtures, Fuel, 112, 263, 10.1016/j.fuel.2013.05.039
Qin, 2000, Laminar burning velocity of hydrogen–air premixed flames at elevated pressure, Exp. Thermal Fluid Sci., 21, 58, 10.1016/S0894-1777(99)00054-0
Kuznetsov, 2012, Flammability limits and laminar flame speed of hydrogen–air mixtures at sub-atmospheric pressures, Int. J. Hydrogen Energy, 37, 17580, 10.1016/j.ijhydene.2012.05.049
Egolfopoulos, 1991, An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations, Proc. Combust. Inst., 23, 333, 10.1016/S0082-0784(06)80276-6
Dowdy, 1991, The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures, Proc. Combust. Inst., 23, 325, 10.1016/S0082-0784(06)80275-4
Aung, 1997, Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure, Combust. Flame, 109, 1, 10.1016/S0010-2180(96)00151-4
Tse, 2000, Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres, Proc. Combust. Inst., 28, 1793, 10.1016/S0082-0784(00)80581-0
Kwon, 2001, Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions, Combust. Flame, 124, 590, 10.1016/S0010-2180(00)00229-7
Verhelst, 2005, Laminar and unstable burning velocities and Markstein lengths of hydrogen–air mixtures at engine-like conditions, Proc. Combust. Inst., 30, 209, 10.1016/j.proci.2004.07.042
Burke, 2009, Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames, Combust. Flame, 156, 771, 10.1016/j.combustflame.2009.01.013
Krejci, 2013, Laminar flame speed and ignition delay time data for the kinetic modeling of hydrogen and syngas fuel blends, J. Eng. Gas Turbines Power, 135, 021503, 10.1115/1.4007737
Wu, 2011, Measurement and correlation of laminar flame speeds of CO and C2 hydrocarbons with hydrogen addition at atmospheric and elevated pressures, Int. J. Hydrogen Energy, 36, 13171, 10.1016/j.ijhydene.2011.07.021
Sun, 2007, High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion, Proc. Combust. Inst., 31, 439, 10.1016/j.proci.2006.07.193
Bouvet, 2011, Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures, Proc. Combust. Inst., 33, 913, 10.1016/j.proci.2010.05.088
Li, 2014, Measurement of the laminar burning velocities and Markstein lengths of lean and stoichiometric syngas premixed flames under various hydrogen fractions, Int. J. Hydrogen Energy, 39, 17371, 10.1016/j.ijhydene.2014.07.177
Li, 2014, Experimental investigation on laminar burning velocities and flame intrinsic instabilities of lean and stoichiometric H2/CO/air mixtures at reduced, normal and elevated pressures, Fuel, 135, 279, 10.1016/j.fuel.2014.06.074
Maragkos, 2014, Differential diffusion effects in numerical simulations of laminar, axi-symmetric H2/N2–air diffusion flames, Int. J. Hydrogen Energy, 39, 13285, 10.1016/j.ijhydene.2014.06.086
Voss, 2014, Determination of laminar burning velocities for lean low calorific H2/N2 and H2/CO/N2 gas mixtures, Int. J. Hydrogen Energy, 34, 19810, 10.1016/j.ijhydene.2014.09.093
Prathap, 2012, Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H2–CO mixtures at atmospheric condition, Combust. Flame, 159, 482, 10.1016/j.combustflame.2011.08.006
Vu, 2010, Effects of diluents on cellular instabilities in outwardly propagating spherical syngas–air premixed flames, Int. J. Hydrogen Energy, 35, 3868, 10.1016/j.ijhydene.2010.01.091
Wang, 2012, Laminar burning velocities and flame characteristics of CO–H2–CO2–O2 mixtures, Int. J. Hydrogen Energy, 37, 19158, 10.1016/j.ijhydene.2012.07.103
Bradley, 1998, The measurement of laminar burning velocities and Markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb, Combust. Flame, 115, 126, 10.1016/S0010-2180(97)00349-0
McLean, 1994, The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction, Symp. (Int.) Combust., 25, 749, 10.1016/S0082-0784(06)80707-1
Hassan, 1997, Properties of laminar premixed CO/H/air flames at various pressures, J. Propul. Power, 13, 239, 10.2514/2.5154
Huang, 2006, Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures, Combust. Flame, 146, 302, 10.1016/j.combustflame.2006.03.003
Dahoe, 2005, Laminar burning velocities of hydrogen–air mixtures from closed vessel gas explosions, J. Prevent. Process Ind., 18, 152, 10.1016/j.jlp.2005.03.007
Lamoureux, 2003, Laminar flame velocity determination for H2–air–He–CO2 mixtures using the spherical bomb method, Exp. Thermal Fluid Sci., 27, 385, 10.1016/S0894-1777(02)00243-1
Han, 2015, Laminar flame speeds of H2/CO with CO2 dilution at normal and elevated pressures and temperatures, Fuel, 148, 32, 10.1016/j.fuel.2015.01.083
Ai, 2014, Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures, Fuel, 137, 339, 10.1016/j.fuel.2014.08.004
Natarajan, 2007, Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure, Combust. Flame, 151, 104, 10.1016/j.combustflame.2007.05.003
Zhang, 2015, Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames, Fuel, 157, 115, 10.1016/j.fuel.2015.05.007
Hu, 2009, Experimental and numerical study on laminar burning velocities and flame instabilities of hydrogen–air mixtures at elevated pressures and temperatures, Int. J. Hydrogen Energy, 34, 5574, 10.1016/j.ijhydene.2009.04.058
Galmiche, 2012, Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures, Combust. Flame, 159, 3286, 10.1016/j.combustflame.2012.06.008
Varea, 2013, Pressure effects on laminar burning velocities and Markstein lengths for isooctane–ethanol–air mixtures, Proc. Combust. Inst., 34, 735, 10.1016/j.proci.2012.06.072
Tang, 2010, Study on nitrogen diluted propane–air premixed flames at elevated pressures and temperatures, Energy Convers. Manage., 51, 288, 10.1016/j.enconman.2009.09.024
Gu, 2011, Measurement of laminar flame speeds and flame stability analysis of tert-butanol–air mixtures at elevated pressures, Energy Convers. Manage., 52, 3137, 10.1016/j.enconman.2011.05.002
Yu, 2014, Experimental and numerical study of laminar premixed dimethyl ether/methane–air flame, Fuel, 136, 37, 10.1016/j.fuel.2014.07.032
Goswami, 2014, Laminar burning velocity of lean H2–CO mixtures at elevated pressure using the heat flux method, Int. J. Hydrogen Energy, 39, 1485, 10.1016/j.ijhydene.2013.10.164
Liu, 2003, The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames, Combust. Flame, 133, 495, 10.1016/S0010-2180(03)00019-1
Chaos, 2008, Syngas combustion kinetics and applications, Combust. Sci. Technol., 180, 1053, 10.1080/00102200801963011