Effect of different tensile loading modes on deformation behavior of nanocrystalline copper: Atomistic simulations
Tài liệu tham khảo
Lieber, 2003, Nanoscale science and technology: building a big future from small things, MRS Bull., 28, 486, 10.1557/mrs2003.144
Paul, 2018, Effect of twist boundary angle on deformation behavior of ⟨1 0 0⟩ FCC copper nanowires, Comput. Mater. Sci., 150, 24, 10.1016/j.commatsci.2018.03.059
Uehara, 2017, 918
Yamakov, 2001, Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation, Acta Mater., 49, 2713, 10.1016/S1359-6454(01)00167-7
Zhang, 2014, Atomistic simulation of tensile deformation behavior of Σ5 tilt grain boundaries in copper bicrystal, Sci. Rep., 4, 1
Lejček, 1995, Thermodynamics and structural aspects of grain boundary segregation, Crit. Rev. Solid State Mater. Sci., 20, 1, 10.1080/10408439508243544
Vincze, 2005, A comparison of the mechanical behaviour of an AA1050 and a low carbon steel deformed upon strain reversal, Acta Mater., 53, 1005, 10.1016/j.actamat.2004.10.046
Ji, 2007, The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires, Nanotechnology, 18, 10.1088/0957-4484/18/30/305704
Mojumder, 2015, Mechanical properties of stanene under uniaxial and biaxial loading: a molecular dynamics study, J. Appl. Phys., 118, 10.1063/1.4931572
Dutta, 2017, Compressive deformation of Fe nanopillar at high strain rate: modalities of dislocation dynamics, Chimia, 125, S221
Yaghoobi, 2018, Acta Materialia the effects of temperature and strain rate in fcc and bcc metals during extreme deformation rates, Acta Mater., 151, 1, 10.1016/j.actamat.2018.03.029
Nathanson, 2018, Atomic-scale structure and stress release mechanism in core-shell nanoparticles, ACS Nano, 12, 12296, 10.1021/acsnano.8b06118
Cao, 2006, Atomistic simulations of the mechanical behavior of fivefold twinned nanowires, Phys. Rev. B Condens. Matter Mater. Phys., 74, 1, 10.1103/PhysRevB.74.214108
Rajput, 2019, Monotonic and cyclic plastic deformation behavior of nanocrystalline gold: atomistic simulations, J. Mol. Model., 25, 153, 10.1007/s00894-019-4041-4
Rajput, 2019, Cyclic plastic deformation response of Nanocrystalline BCC Iron, Met. Mater. Int., 10.1007/s12540-019-00475-0
Rajput, 2019, Understanding the physics of non-linear unloading-reloading behavior of metal for springback prediction, J. Mol. Model., 10.1007/s00894-019-4203-4
Bernal, 2015, Intrinsic bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension, Nano Lett., 15, 139, 10.1021/nl503237t
Lee, 2014, Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM, Nat. Commun., 5, 1
Kun, 2008, Strain rate sensitivities of face-centred-cubic metals using molecular dynamics simulation, Chin. Phys. Lett., 25, 2581, 10.1088/0256-307X/25/7/068
Xu, 2018, In-situ micro-tensile investigation of strain rate response along <100> and <110> directions in single crystal nickel, Int. J. Plast., 106, 129, 10.1016/j.ijplas.2018.03.005
Saha, 2017, Investigation on mechanical properties of polycrystalline W nanowire, Comput. Mater. Sci., 136, 52, 10.1016/j.commatsci.2017.04.025
Ruan, 2018, Effects of strain rate, temperature and grain size on the mechanical properties and microstructure evolutions of polycrystalline nickel nanowires: a molecular dynamics simulation, Wuhan Univ. J. Nat. Sci., 23, 251, 10.1007/s11859-018-1318-x
Xie, 2015, A new strain-rate-induced deformation mechanism of Cu nanowire: transition from dislocation nucleation to phase transformation, Acta Mater., 85, 191, 10.1016/j.actamat.2014.11.017
Sainath, 2016, Orientation dependent deformation behaviour of BCC iron nanowires, Comput. Mater. Sci., 111, 406, 10.1016/j.commatsci.2015.09.055
Zhang, 2017, Molecular dynamics simulation of crack propagation in nanoscale polycrystal nickel based on different strain rates, Metals (Basel), 7, 432, 10.3390/met7100432
Yaghoobi, 2017, Microstructural investigation of the hardening mechanism in fcc crystals during high rate deformations, Comput. Mater. Sci., 138, 10, 10.1016/j.commatsci.2017.06.003
Zhou, 2004, Response of copper nanowires in dynamic tensile deformation, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 218, 599, 10.1243/095440604774202231
Salehinia, 2014, Crystal orientation effect on dislocation nucleation and multiplication in FCC single crystal under uniaxial loading, Int. J. Plast., 10.1016/j.ijplas.2013.04.010
Paul, 2017, Effect of loading conditions on nucleation of nano void and failure of nanocrystalline aluminum: an atomistic investigation, Eng. Fract. Mech., 176, 257, 10.1016/j.engfracmech.2017.03.010
Yang, 2018, Void effect on mechanical properties of copper nanosheets under biaxial tension by molecular dynamics method, Phys. Lett. Sect. A Gen. Solid State Phys., 382, 781
Lin, 2008, The study of deformation and stress-strain distribution of nano-scale thin sheet copper under the biaxial tensile loads by using molecular dynamics and finite-element method, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 222, 1097, 10.1243/09544062JMES528
Yoshikawa, 2019, Molecular dynamics of chirality definable growth of single-walled carbon nanotubes, ACS Nano, 13, 6506, 10.1021/acsnano.8b09754
Oeiras, 2009, Defect-mediated half-metal behavior in zigzag graphene nanoribbons, Phys. Rev. B Condens. Matter Mater. Phys., 80, 1, 10.1103/PhysRevB.80.073405
De Lara, 2016, Functionalized silica nanoparticles within multicomponent oil/brine interfaces: a study in molecular dynamics, J. Phys. Chem. C, 120, 6787, 10.1021/acs.jpcc.5b11225
Marana, 2016, Periodic density functional theory study of structural and electronic properties of single-walled zinc oxide and carbon nanotubes, J. Solid State Chem., 237, 36, 10.1016/j.jssc.2016.01.017
Benítez, 2011, Structure and chemical state of octadecylamine self-assembled monolayers on mica, J. Phys. Chem. C, 115, 19716, 10.1021/jp203871g
Pereira, 2011, Cold welding of gold and silver nanowires: a molecular dynamics study, J. Phys. Chem. C, 115, 22870, 10.1021/jp207842v
Reischl, 2017, Atomistic simulation of the measurement of mechanical properties of gold nanorods by AFM, Sci. Rep., 7, 1, 10.1038/s41598-017-16460-9
Hirel, 2015, Atomsk: a tool for manipulating and converting atomic data files, Comput. Phys. Commun., 197, 212, 10.1016/j.cpc.2015.07.012
Nosé, 1984, A molecular dynamics method for simulations in the canonical ensemble, Int. J. Interface Between Chem. Phys. Mol. Phys., 52, 255
Hoover, 1985, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev., 31, 1695, 10.1103/PhysRevA.31.1695
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039
Mendelev, 2013, The interactions of self-interstitials with twin boundaries, Philos. Mag., 93, 1268, 10.1080/14786435.2012.747012
Zhou, 2003, A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proc. R. Soc. A Math. Phys. Eng. Sci., 459, 2347, 10.1098/rspa.2003.1127
Zimmerman, 2004, Calculation of stress in atomistic simulation, Model. Simul. Mater. Sci. Eng., 12, 10.1088/0965-0393/12/4/S03
Stukowski, 2010, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/1/015012
Stukowski, 2010, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Model. Simul. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/8/085001
Stukowski, 2012, Automated identification and indexing of dislocations in crystal interfaces, Model. Simul. Mater. Sci. Eng., 20, 10.1088/0965-0393/20/8/085007
Lebedev, 1995, Softening of the elastic modulus in submicrocrystalline copper, Mater. Sci. Eng. A, 203, 165, 10.1016/0921-5093(95)09868-2
Zhu, 2011, Molecular dynamics simulation of Bauschinger’s effect in deformed copper single crystal in different strain ranges, J. Appl. Phys., 110, 10.1063/1.3672414
Cao, 2015, The role of partial mediated slip during quasi-static deformation of 3D nanocrystalline metals, J. Mech. Phys. Solids, 78, 415, 10.1016/j.jmps.2015.02.019
Li, 2010, Superelasticity in bcc nanowires by a reversible twinning mechanism, Phys. Rev. B Condens. Matter Mater. Phys., 82, 1, 10.1103/PhysRevB.82.205435
Tao, 2018, Atomistic simulation of the rate-dependent ductile-to-brittle failure transition in bicrystalline metal nanowires, Nano Lett., 18, 1296, 10.1021/acs.nanolett.7b04972
Saleh, 2013, On the evolution and modelling of lattice strains during the cyclic loading of TWIP steel, Acta Mater., 61, 5247, 10.1016/j.actamat.2013.05.017
Wu, 2008, Inverse grain-size effect on twinning in nanocrystalline Ni, Phys. Rev. Lett., 101, 1, 10.1103/PhysRevLett.101.025503
Yang, 2017, Molecular dynamics simulations of single crystal copper nanocubes under triaxial tensile loading, Comput. Mater. Sci., 138, 377, 10.1016/j.commatsci.2017.07.003
Zhu, 2019, In situ atomistic observation of disconnection-mediated grain boundary migration, Nat. Commun., 10, 156, 10.1038/s41467-018-08031-x
Rupert, 2009, Experimental observations of stress-driven grain boundary migration, Science, 326, 1686, 10.1126/science.1178226
Mompiou, 2013, Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: an in situ TEM study, Acta Mater., 61, 205, 10.1016/j.actamat.2012.09.051
Gianola, 2006, Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films, Acta Mater., 54, 2253, 10.1016/j.actamat.2006.01.023
Shimizu, 2007, Theory of shear banding in metallic glasses and molecular dynamics calculations, Mater. Trans., 48, 2923, 10.2320/matertrans.MJ200769
Adibi, 2013, A transition from localized shear banding to homogeneous superplastic flow in nanoglass, Appl. Phys. Lett., 103, 1, 10.1063/1.4833018
Sha, 2015, Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches, Sci. Rep., 5, 1, 10.1038/srep10797
Wan, 2017, Surface morphology alteration, microstructure variation and dislocation-precipitate interactions of Inconel 718 due to helium ions irradiation, Mater. Char., 127, 95, 10.1016/j.matchar.2016.12.018
Hasegawa, 2004, Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets, ISIJ Int., 44, 603, 10.2355/isijinternational.44.603
Wen, 2018, Atomistic simulation analysis of the effects of void interaction on void growth and coalescence in a metallic system, 18, 744