Tác động của việc bổ sung natri butyrate và tributyrin vào chế độ ăn đối với hiệu suất tăng trưởng và vi khuẩn đường ruột của tôm thẻ chân trắng Thái Bình Dương (Litopenaeus vannamei)

Springer Science and Business Media LLC - Tập 30 - Trang 2477-2489 - 2022
Liangfang Liu1,2, Yuanxiao Wang3, Jiping Ren3, Huafeng Zou1,2, Chun Wang1,2
1Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
2College of Fisheries and Life Science, National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China
3BA AnimalNutrition (Perstorp), Shanghai, China

Tóm tắt

Một thử nghiệm cho ăn kéo dài 6 tuần đã được thực hiện nhằm điều tra tác động của việc bổ sung natri butyrate (SB) và tributyrin (TBT) đối với hiệu suất tăng trưởng, enzyme tiêu hóa và hệ vi sinh vật đường ruột của tôm (Litopenaeus vannamei). Nhóm đối chứng (CON) được cho ăn chế độ ăn cơ bản, trong khi nhóm SB được cho ăn chế độ ăn cơ bản bổ sung 0,2% SB, và nhóm TBT được cho ăn chế độ ăn cơ bản bổ sung 0,05% TBT. Vào cuối thử nghiệm cho ăn, hiệu suất tăng trưởng cao hơn và tỷ lệ chuyển đổi thức ăn thấp hơn đã được ghi nhận ở các nhóm SB và TBT. Trong khi đó, chỉ số đa dạng alpha (Shannon và Chao1) thấp hơn ở nhóm SB và cao hơn ở nhóm TBT, tương ứng. Ngoài ra, hệ vi sinh vật đường ruột cũng đã thay đổi. Ví dụ, sự phong phú của vi khuẩn có lợi Pseudomonas đã được làm giàu, trong khi các thành phần của các tác nhân gây bệnh tiềm ẩn bị ức chế. Hơn nữa, so với nhóm CON, hoạt động của protease và amylase trong gan tuỵ đã được cải thiện ở các nhóm SB và TBT. Hoạt động của phosphatase kiềm và phenol oxidase cũng đã tăng đáng kể ở các nhóm SB và TBT. Tóm lại, việc bổ sung chế độ ăn với TB và TBT có thể cải thiện hiệu suất tăng trưởng và giảm sự phong phú tương đối của vi khuẩn có hại, và TBT đã vượt trội hơn SB trong việc cải thiện sự tăng trưởng của tôm.

Từ khóa

#natri butyrate #tributyrin #hiệu suất tăng trưởng #vi khuẩn đường ruột #tôm thẻ chân trắng Thái Bình Dương

Tài liệu tham khảo

Amparyup P, Charoensapsri W, Tassanakajon A (2013) Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol 34:990–1001. https://doi.org/10.1016/j.fsi.2012.08.019 Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43. https://doi.org/10.1128/MMBR.00019-15 Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A (2018) Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 50:421–428. https://doi.org/10.1016/j.dld.2018.02.012 Busti S, Rossi B, Volpe E et al (2020) Effects of dietary organic acids and nature identical compounds on growth, immune parameters and gut microbiota of European sea bass. Sci Rep 10:21321. https://doi.org/10.1038/s41598-020-78441-9 da Silva BC, do Nascimento Vieira F, Mouriño JLP, Bolivar N, Seiffert WQ (2016) Butyrate and propionate improve the growth performance of Litopenaeus vannamei. Aquacult Res 47:612–623. https://doi.org/10.1111/are.12520 Dong HT, Techatanakitarnan C, Jindakittikul P, Thaiprayoon A, Taengphu S, Charoensapsri W, Khunrae P, Rattanarojpong T, Senapin S (2017) Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, Oreochromis niloticus (L.). J Fish Dis 40:1395–1403. https://doi.org/10.1111/jfd.12617 Fan L, Li QX (2019) Characteristics of intestinal microbiota in the Pacific white shrimp Litopenaeus vannamei differing growth performances in the marine cultured environment. Aquaculture 505:450–461. https://doi.org/10.1016/j.aquaculture.2019.02.075 Fečkaninová A, Koščová J, Mudroňová D, Popelka P, Toropilová J (2017) The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 469:1–8. https://doi.org/10.1016/j.aquaculture.2016.11.042 Gabriel I, Lessire M, Mallet S, Guillot JF (2006) Microflora of the digestive tract: critical factors and consequences for poultry. Null 62:499–511. https://doi.org/10.1017/S0043933906001115 Guilloteau P, Zabielski R, David JC, Blum JW, Morisset JA, Biernat M, Wolinski J, Laubitz D, Hamon Y (2009) Sodium-butyrate as a growth promoter in milk replacer formula for young calves. J Dairy Sci 92(3):1038–1049 Harris JM (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol 25:195–231. https://doi.org/10.1007/BF00171889 Heidor R, Ortega JF, de Conti A, Ong TP, Moreno FS (2012) Anticarcinogenic actions of tributyrin, a butyric acid prodrug. Curr Drug Targets 13:1720–1729. https://doi.org/10.2174/138945012804545443 Hu Z, Guo Y (2007) Effects of dietary sodium butyrate supplementation on the intestinal morphological structure, absorptive function and gut flora in chickens. Anim Feed Sci Technol 132:240–249. https://doi.org/10.1016/j.anifeedsci.2006.03.017 Knarreborg A, Miquel N, Granli T, Jensen BB (2002) Establishment and application of an in vitro methodology to study the effects of organic acids on coliform and lactic acid bacteria in the proximal part of the gastrointestinal tract of piglets. Anim Feed Sci Technol 99:131–140. https://doi.org/10.1016/S0377-8401(02)00069-X Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinf Chapter 10:Unit10.7–10.7. https://doi.org/10.1002/0471250953.bi1007s36 Lemos D, Garcia-Carreño FL, Hernández P, Navarrete del Toro A (2002) Ontogenetic variation in digestive proteinase activity, RNA and DNA content of larval and postlarval white shrimp Litopenaeus schmitti. Aquaculture 214:363–380. https://doi.org/10.1016/S0044-8486(02)00253-3 Li J, Yu H, Yang X, Dong R, Liu Z, Zeng M (2020) Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp. Genomics 112:736–748. https://doi.org/10.1016/j.ygeno.2019.05.010 Lightner DV (2011) Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): a review. J Invertebr Pathol 106:110–130. https://doi.org/10.1016/j.jip.2010.09.012 Liu JY, Li AH (2012) First case of Aeromonas schubertii infection in the freshwater cultured snakehead fish, Ophiocephalus argus (Cantor), in China. J Fish Dis 35:335–342. https://doi.org/10.1111/j.1365-2761.2012.01350.x Lum J, Sygall R, Felip J (2018) Comparison of tributyrin and coated sodium butyrate as sources of butyric acid for improvement of growth performance in Ross 308 broilers. Int J Poult Sci 17:290–294 Macey BM, Coyne VE (2005) Improved growth rate and disease resistance in farmed Haliotis midae through probiotic treatment. Aquaculture 245:249–261. https://doi.org/10.1016/j.aquaculture.2004.11.031 Nakano H, Kameyama T, Venkateswaran K et al (2013) Distribution and characterization of hemolytic, and enteropathogenic motile Aeromonas in aquatic environment. Microbiol Immunol 34:447–458 Ng W-K, Koh C-B, Sudesh K, Siti-Zahrah A (2009) Effects of dietary organic acids on growth, nutrient digestibility and gut microflora of red hybrid tilapia, Oreochromis sp., and subsequent survival during a challenge test with Streptococcus agalactiae. Aquac Res 40:1490–1500. https://doi.org/10.1111/j.1365-2109.2009.02249.x Nuez-Ortin W (2011) Gustor-aqua: an effective solution to optimize health status and nutrient utilization. Int. Aquafeed (May and June) 18–20 Rattanachuay P, Kantachote D, Tantirungkij M, Nitoda T, Kanzaki H (2010) Inhibition of shrimp pathogenic vibrios by extracellular compounds from aproteolytic bacterium Pseudomonas sp. W3. Electron J Biotechnol 13:8–9 Rungrassamee W, Klanchui A, Chaiyapechara S, Maibunkaew S, Tangphatsornruang S, Jiravanichpaisal P, Karoonuthaisiri N (2013) Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS ONE 8:e60802. https://doi.org/10.1371/journal.pone.0060802 Rungrassamee W, Klanchui A, Maibunkaew S, Chaiyapechara S, Jiravanichpaisal P, Karoonuthaisiri N (2014) Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS ONE 9:e91853. https://doi.org/10.1371/journal.pone.0091853 Sarker MSA, Satoh S, Kamata K, Haga Y, Yamamoto Y (2012) Supplementation effect(s) of organic acids and/or lipid to plant-based diets on juvenile yellowtail, Seriola quinqueradiata Temminck et Schlegel 1845, growth and nitrogen and phosphorus excretion. Aquac Res 43:538–545 Sarlin PJ, Philip R (2011) Efficacy of marine yeasts and baker’s yeast as immunostimulants in Fenneropenaeus indicus: a comparative study. Aquaculture 321:173–178. https://doi.org/10.1016/j.aquaculture.2011.08.039 Shin N-R, Whon TW, Bae J-W (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503. https://doi.org/10.1016/j.tibtech.2015.06.011 Söderhäll K, Cerenius L, Johansson MW (1994) The prophenoloxidase activating system and its role in invertebrate defence. Ann N Y Acad Sci 712:155–161. https://doi.org/10.1111/j.1749-6632.1994.tb33570.x Sotira S, Dell’Anno M, Caprarulo V, Hejna M, Pirrone F, Callegari ML, Tucci TV, Rossi L (2020) Effects of tributyrin supplementation on growth performance, insulin, blood metabolites and gut microbiota in weaned piglets. Animals: an open access journal from MDPI 10(4):726. https://doi.org/10.3390/ani10040726 Wang Y, Wang B, Liu M, Jiang K, Wang M, Wang L (2018) Aflatoxin B1 (AFB1) induced dysregulation of intestinal microbiota and damage of antioxidant system in pacific white shrimp (Litopenaeus vannamei). Aquaculture 495:940–947. https://doi.org/10.1016/j.aquaculture.2018.06.065 Wei C, Wang X, Li C, Zhou H, Liu C, Mai K, He G (2021) Effects of dietary Shewanella sp. MR-7 on the growth performance, immunity, and intestinal microbiota of Pacific white shrimp. Aquacult Rep 19:100595. https://doi.org/10.1016/j.aqrep.2021.100595 Xie D, Dai Q, Xu C, Li Y (2021) Dietary tributyrin modifies intestinal function by altering morphology, gene expression and microbiota profile in common carp (Cyprinus carpio) fed all-plant diets. Aquac Nutr 27:439–453. https://doi.org/10.1111/anu.13197 Yang X, Yin F, Yang Y et al (2018) Dietary butyrate glycerides modulate intestinal microbiota composition and serum metabolites in broilers. Sci Rep 8:4940. https://doi.org/10.1038/s41598-018-22565-6 Yin X-L, Li Z-J, Yang K, Lin H-Z, Guo Z-X (2014) Effect of guava leaves on growth and the non-specific immune response of Penaeus monodon. Fish Shellfish Immunol 40:190–196. https://doi.org/10.1016/j.fsi.2014.07.001 Zhang M, Sun Y, Chen K, Yu N, Zhou Z, Chen L, Du Z, Li E (2014) Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture 434:449–455. https://doi.org/10.1016/j.aquaculture.2014.09.008 Zhao H, Wang G, Wang H, Mo W, Huang Y, Cao J, Li P (2021) Effects of dietary sodium butyrate on growth, digestive enzymes, body composition and nutrient retention-related gene expression of juvenile yellow catfish (Pelteobagrus fulvidraco). Anim Nutr 7(2):539–547 Zheng Y, Yu M, Liu J, Qiao Y, Wang L, Li Z, Zhang X-H, Yu M (2017) Bacterial community associated with healthy and diseased pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages. Front Microbiol 8:1362. https://doi.org/10.3389/fmicb.2017.01362 Zhu X, Liu Y-J, Tian L, Mai K, Zheng S, Pan Q, Cai M, Zheng C, Zhang Q, Hu Y (2010) Effects of dietary protein and lipid levels on growth and energy productive value of pacific white shrimp, Litopenaeus vannamei, at different salinities. Aquac Nutr 16:392–399