Effect of cold plasma on periodontal wound healing—an in vitro study

Springer Science and Business Media LLC - Tập 23 - Trang 1941-1950 - 2018
Benedikt Kleineidam1, M. Nokhbehsaim2, J. Deschner3, G. Wahl1
1Department of Oral Surgery, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
2Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
3Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany

Tóm tắt

Cold atmospheric plasma (CAP), a room temperate ionized gas, seems to be a possible way to enhance tissue recovery. An in vitro study was conducted to investigate the influence of medical CAP on the regenerative capacity of human periodontal ligament (PDL) cells. Human PDL cells were subjected to CAP at various intensities, distances, and durations. The effects of CAP on a number of specific markers were studied at transcriptional level using real-time PCR. Additionally, an in vitro wound healing assay was applied to PDL cell monolayers either in the presence or absence of CAP by using JuLI™ Br Live Cell Analyzer and software. Finally, cell viability of CAP-treated cells was analyzed by an XTT assay. CAP treatment enhanced significantly the expression of the cytokines tumor necrosis factor (TNF)α, cyclooxygenase (COX)2, interleukin (IL)-1β, IL-6, IL-8, collagen (COL)1α, and matrix metalloproteinase (MMP)1, as well as the proliferation markers Ki67 and proliferating cell nuclear antigen (PCNA), but downregulated apoptotic markers Apaf1 and p53. Additionally, the in vitro wound healing rate was significantly enhanced after CAP application. Moreover, CAP treatment resulted in a significantly increased cell viability in the XTT assay. This in vitro study shows that CAP has regulatable effects on markers of periodontal wound healing thereby underlining the potential use of CAP as a benefit treatment strategy. Our study demonstrates the application of CAP in the treatment of oral pathologies suggesting a promising future treatment approach.

Tài liệu tham khảo

Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1(2):142–149 Velnar T, Bailey T, Smrkoli V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542 Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108(5):231–236 Noh MK, Jung M, Kim SH, Lee SR, Park KH, Kim DH, Kim HH, Park YG (2013) Assessment of IL6, IL8 and TNF-α levels in the gingival tissue of patients with periodontitis. Exp Ther Med 6(3):847–851 Sorsa T, Tjäderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, Golub LM, Brown DL, Mäntylä P (2006) Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med 38(5):306–321 Degreef HJ (1998) How to heal a wound fast. Dermatol Clin 16:365–375 Hunt TK (1988) The physiology of wound healing. Ann Emerg Med 17:1265–1273 Schultz G, Rotatori DS, Clark W (1991) EGF and TGF-alpha in wound healing and repair. J Cell Biochem 45:346–352 Tonnesen MG, Feng XD, Clark RAF (2000) Angiogenesis in wound healing. J Invest Dermatol Symp Proc 5:40–46 Ramasastry SS (2005) Acute wounds. Clin Plast Surg 32:195–208 Clark RAF (1993) Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci 306:42–48 Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321 Dahlin C, Linde A, Gottlow J, Nyman S (1988) Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg 81(5):672–676 Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA (2017) Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol 199(1):17–24. https://doi.org/10.4049/jimmunol.1700223 Eisenbeis J, Peisker H, Backes CS, Bur S, Hölters S, Thewes N, Greiner M, Junker C, Schwarz EC, Hoth M, Junker K, Preissner KT, Jacobs K, Herrmann M, Bischoff M (2017) The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes. Int J Med Microbiol 307(2):116–125 Swift ME, Kleinman HK, DiPietro LA (1999) Impaired wound repair and delayed angiogenesis in aged mice. Lab Investig 79(12):1479–1487 Zhang L, Liu W, Zhao J, Ma X, Shen L, Zhang Y, Jin F, Jin Y (2016) Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/β-catenin pathway. Biochim Biophys Acta 1860(10):2211–2219 Marchesan JT, Scanlon CS, Soehren S, Matsuo M, Kapila YL (2011) Implications of cultured periodontal ligament cells for the clinical and experimental setting: a review. Arch Oral Biol 56(10):933–943 Bosshardt DD (2008) Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 35(8):87–105 Birang R, Shahaboui M, Kiani S, Shadmehr E, Naghsh N (2015) Effect of nonsurgical periodontal treatment combined with diode laser or photodynamic therapy on chronic periodontitis: a randomized controlled split-mouth clinical trial. J Lasers Med Sci 6(3):112–119 Brun P, Pathak S, Castagliuolo I, Palù G, Brun P, Zuin M, Cavazzana R, Martines E (2014) Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS One 9(8):e104397 Arndt S, Wacker E, Li YF, Shimizu T, Thomas HM, Morfill GE, Karrer S, Zimmermann JL, Bosserhoff AK (2013) Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol 22(10):284–289. https://doi.org/10.1111/exd.12127 Shi L, Yu L, Zou F, Hu H, Liu K, Lin Z (2017) Gene expression profiling and functional analysis reveals that p53 pathway-related gene expression is highly activated in cancer cells treated by cold atmospheric plasma-activated medium. PeerJ 25(5):e3751. https://doi.org/10.7717/peerj.3751 eCollection 2017 Haertel B, von Woedtke T, Weltmann KD, Lindequist U (2014) Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol Ther (Seoul) 22(6):477–490 Daeschlein G, Scholz S, Ahmed R, von Woedtke T, Haase H, Niggemeier M, Kindel E, Brandenburg R, Weltmann KD, Juenger M (2012) Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect 81(3):177–183 Heinlin J, Isbary G, Stolz W, Morfill G, Landthaler M, Shimizu T, Steffes B, Nosenko T, Zimmermann J, Karrer S (2011) Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol Venereol 25(1):1–11 Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Shimizu T, Steffes B, Bunk W, Monetti R, Zimmermann JL, Pompl R, Stolz W (2010) A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol 163(1):78–82 Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G, Schmidt HU, Monetti R, Steffes B, Bunk W, Li Y, Klaempfl T, Karrer S, Landthaler M, Stolz W (2012) Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol 167(2):404–410 Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer c105(9):1295–1301 Seyfarth K, Blum C, Plank A, Sommer C, Mergner M, Thomaschewski B (2015) Behandlung von Aphthen im Mundraum mit Plasma. Plasma Kurier 2(1):23–26 Turrini E, Laurita R, Stancampiano A, Catanzaro E, Calcabrini C, Maffei F, Gherardi M, Colombo V, Fimognari C (2017) Cold atmospheric plasma induces apoptosis and oxidative stress pathway regulation in T-lymphoblastoid leukemia cells. Oxidative Med Cell Longev 2017:4271065 Zhong SY, Dong YY, Liu DX, Xu DH, Xiao SX, Chen HL, Kong MG (2016) Surface air plasma-induced cell death and cytokine release of human keratinocytes in the context of psoriasis. Br J Dermatol 174(3):542–552 Mariotti A, Cochran DL (1990) Characterization of fibroblasts derived from human periodontal ligament and gingiva. J Periodontol 61(2):103–111 Memmert S, Nokhbehsaim M, Damanaki A, Nogueira AVB, Papadopoulou AK, Piperi C, Basdra EK, Rath-Deschner B, Götz W, Cirelli JA, Jäger A, Deschner J (2018) Role of cathepsin S in periodontal wound healing—an in vitro study on human PDL cells. BMC Oral Health 18(1):60 Bekeschus S, Schmidt A, Bethge L, Masur K, von Woedtke T, Hasse S, Wende K (2016) Redox stimulation of human THP-1 monocytes in response to cold physical plasma. Oxidative Med Cell Longev 2016:5910695 Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Kajiyama H, Kano H, Kikkawa F, Hori M (2011) Plasma-activated medium selectively kills glioblastoma brain tumor cells by down-regulating a survival signaling molecule, AKT kinase. Plasma Medicine 1:265–277 Virard F, Cousty S, Cambus JP, Valentin A, Kémoun P, Clément F (2015) Cold atmospheric plasma induces a predominantly necrotic cell death via the microenvironment. PLoS One 10(8):e0133120 Yan DY, Talbot A, Nourmohammadi N, Cheng XQ, Canady J, Sherman J, Keidar M (2015) Principles of using cold atmospheric plasma stimulated media for cancer treatment. Sci Rep 5:18339 Bundscherer L, Nagel S, Hasse S, Tresp H, Wende K, Walther R, Reuter S, Weltmann K-D, Masur K, Lindequist U (2015) Non-thermal plasma treatment induces MAPK signaling in human monocytes. Open Chem 13:606–613 Arndt S, Unger P, Wacker E, Shimizu T, Heinlin J, Li YF, Thomas HM, Morfill GE, Zimmermann JL, Bosserhoff AK, Karrer S (2013) Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One 8(11):e79325 2013b Kwon JS, Kim YH, Choi EH, Kim CK, Kim KN, Kim KM (2016) Non-thermal atmospheric pressure plasma increased mRNA expression of growth factors in human gingival fibroblasts. Clin Oral Investig 20(7):1801–1808 Delben JA, Zago CE, Tyhovych N, Duarte S, Vergani CE (2016) Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS One 11(5):e0155427 Gümbel D, Gelbrich N, Weiss M, Napp M, Daeschlein G, Sckell A, Ender SA, Kramer A, Burchardt M, Ekkernkamp A, Stope MB (2016) New treatment options for osteosarcoma-inactivation of osteosarcoma cells by cold atmospheric plasma. Anticancer Res 36(11):5915–5922 Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T (2017) A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 26(2):156–162 Arndt S, Landthaler M, Zimmermann JL, Unger P, Wacker E, Shimizu T, Li YF, Morfill GE, Bosserhoff AK, Karrer S (2015) Effects of cold atmospheric plasma (CAP) on ß-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One 10(3):e0120041 Lendeckel D, Eymann C, Emicke P, Daeschlein G, Darm K, O'Neil S, Beule AG, von Woedtke T, Völker U, Weltmann KD, Jünger M, Hosemann W, Scharf C (2015) Proteomic changes of tissue-tolerable plasma treated airway epithelial cells and their relation to wound healing. Biomed Res Int 2015:506059 Lee JH, Om JY, Kim YH, Kim KM, Choi EH, Kim KN (2016) Selective killing effects of cold atmospheric pressure plasma with NO induced dysfunction of epidermal growth factor receptor in oral squamous cell carcinoma. PLoS One 11(2):e0150279 Maisch T, Bosserhoff AK, Unger P, Heider J, Shimizu T, Zimmermann JL, Morfill GE, Landthaler M, Karrer S (2017) Investigation of toxicity and mutagenicity of cold atmospheric argon plasma. Environ Mol Mutagen 58(3):172–177 Arndt S, Unger P, Berneburg M, Bosserhoff AK, Karrer S (2018) Cold atmospheric plasma (CAP) activates angiogenesis-related molecules in skin keratinocytes, fibroblasts and endothelial cells and improves wound angiogenesis in an autocrine and paracrine mode. J Dermatol Sci 89(2):181–190