Effect of cobalt doping on the mechanical properties of ZnO nanowires
Tài liệu tham khảo
Wang, 2004, Zinc oxide nanostructures: growth, properties and applications, J. Phys. Condens. Matter, 16, R829, 10.1088/0953-8984/16/25/R01
Cui, 2012, Zinc oxide nanowires, Mater. Charact., 64, 43, 10.1016/j.matchar.2011.11.017
Yuhas, 2006, Transition-metal doped zinc oxide nanowires, Angew. Chem. Int. Ed., 45, 420, 10.1002/anie.200503172
Etacheri, 2012, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis, ACS Appl. Mater. Interfaces, 4, 2717, 10.1021/am300359h
Wu, 2011, Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity, Mater. Lett., 65, 1794, 10.1016/j.matlet.2011.03.070
Mahmood, 2011, Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles, Mater. Chem. Phys., 130, 531, 10.1016/j.matchemphys.2011.07.018
Ullah, 2008, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater., 156, 194, 10.1016/j.jhazmat.2007.12.033
He, 2012, Local structure and photocatalytic property of sol–gel synthesized ZnO doped with transition metal oxides, J. Mater. Sci., 47, 3150, 10.1007/s10853-011-6149-5
Kuriakose, 2014, Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method, Phys. Chem. Chem. Phys., 16, 12741, 10.1039/c4cp01315h
Lu, 2011, A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties, Nano Res., 4, 1144, 10.1007/s12274-011-0163-4
Kumar, 2014, Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route, J. Alloys Compd., 588, 681, 10.1016/j.jallcom.2013.11.127
Yu, 2014, Enhanced photocatalytic activity of Fe-doped ZnO nanoparticles synthesized via a two-step sol–gel method, J. Mater. Sci. Mater. Electron., 25, 3920, 10.1007/s10854-014-2107-8
Yin, 2015, Hierarchical nanostructures of nickel-doped zinc oxide: morphology controlled synthesis and enhanced visible-light photocatalytic activity, J. Alloys Compd., 618, 318, 10.1016/j.jallcom.2014.08.087
Roy, 2012, Effect of neodymium doping on structure, electrical and optical properties of nanocrystalline ZnO, Mater. Charact., 70, 1, 10.1016/j.matchar.2012.04.015
Wu, 2012, Solvothermal synthesis of Cu-doped ZnO nanowires with visible light-driven photocatalytic activity, Mater. Lett., 74, 236, 10.1016/j.matlet.2012.01.125
Xiao, 2007, Photocatalytic decolorization of methylene blue over Zn1−xCoxO under visible light irradiation, Mater. Sci. Eng. B, 142, 121, 10.1016/j.mseb.2007.06.021
Wang, 2015, Growth conditions control the elastic and electrical properties of ZnO nanowires, Nano Lett., 15, 7886, 10.1021/acs.nanolett.5b02852
Duncan, 2006, Role of point defects in the physical properties of fluorite oxides, J. Am. Ceram. Soc., 89, 3162, 10.1111/j.1551-2916.2006.01193.x
Pan, 2014, Effect of boron vacancies on mechanical properties of ReB2 from first-principles calculation, Comput. Mater. Sci., 82, 12, 10.1016/j.commatsci.2013.09.018
Šutka, 2016, Co doped ZnO nanowires as visible light photocatalysts, Solid State Sci., 56, 54, 10.1016/j.solidstatesciences.2016.04.008
Liang, 2009, Magnetotransport in Co-doped ZnO nanowires, Nano Lett., 9, 892, 10.1021/nl8038184
Agrawal, 2008, Elasticity size effects in ZnO nanowires – a combined experimental-computational approach, Nano Lett., 8, 3668, 10.1021/nl801724b
Desai, 2007, Mechanical properties of ZnO nanowires, Sensors Actuators A Phys., 134, 169, 10.1016/j.sna.2006.04.046
He, 2009, Diameter dependence of modulus in zinc oxide nanowires and the effect of loading modes: in situ experiments and universal core-shell approach, Appl. Phys. Lett., 95, 091912, 10.1063/1.3205102
Xu, 2010, Mechanical properties of ZnO nanowires under different loading modes, Nano Res., 3, 271, 10.1007/s12274-010-1030-4
Hoffmann, 2007, Fracture strength and Young's modulus of ZnO nanowires, Nanotechnology, 18, 205503, 10.1088/0957-4484/18/20/205503
Stan, 2007, Diameter-dependent radial and tangential elastic moduli of ZnO nanowires, Nano Lett., 7, 3691, 10.1021/nl071986e
Jiang, 2014, Young's modulus of individual ZnO nanowires, Mater. Sci. Eng. A, 610, 1, 10.1016/j.msea.2014.05.027
Soomro, 2012, Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment, Nanoscale Res. Lett., 7, 146, 10.1186/1556-276X-7-146
Chen, 2006, Size dependence of Young's modulus in ZnO nanowire, Phys. Rev. Lett., 96, 075505, 10.1103/PhysRevLett.96.075505
Huang, 2006, In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles, J. Phys. Condens. Matter, 18, L179, 10.1088/0953-8984/18/15/L03
Zhou, 2006, Nanowire as pico-gram balance at workplace atmosphere, Solid State Commun., 139, 222, 10.1016/j.ssc.2006.06.004
Qin, 2012, Measuring true Young's modulus of a cantilevered nanowires: effect of clamping on resonance frequency, Small, 8, 2571, 10.1002/smll.201200314
Wen, 2008, Mechanical properties of ZnO nanowires, Phys. Rev. Lett., 101, 175502, 10.1103/PhysRevLett.101.175502
Manoharan, 2008, Synthesis and elastic characterization of zinc oxide nanowires, J. Nanomater., 849745
Song, 2005, Elastic property of vertically aligned nanowire, Nano Lett., 5, 1954, 10.1021/nl051334v
Polyakov, 2011, Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope, Solid State Commun., 151, 1244, 10.1016/j.ssc.2011.05.045
Dorogin, 2013, Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling, Phys. Status Solidi B, 250, 305, 10.1002/pssb.201248445
Polyakov, 2012, In situ measurements of ultimate bending strength of CuO and ZnO nanowires, Eur. Phys. J. B, 85, 366, 10.1140/epjb/e2012-30430-6
Asthana, 2011, In situ observation of size-scale effects on the mechanical properties of ZnO nanowires, Nanotechnology, 22, 265712, 10.1088/0957-4484/22/26/265712
Huang, 2009, Size independence and doping dependence of bending modulus in ZnO nanowires, Gryst. Growth Des., 9, 1640, 10.1021/cg800535z
Huang, 2007, Field emission of a single In-doped ZnO nanowire, J. Phys. Chem. C, 111, 9039, 10.1021/jp0666030
Doebelin, 2015, Profex: a graphical user interface for the Rietveld refinement program BGMN, J. Appl. Crystallogr., 48, 1573, 10.1107/S1600576715014685
Bergmann, 1998, BGMN – a new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations, 20, 5
Kisi, 1989, U parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction, Acta Crystallogr. C, 45, 186, 10.1107/S0108270189004269
Vlassov, 2016, Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations, Nanotechnology, 27, 335701, 10.1088/0957-4484/27/33/335701
Clifford, 2005, The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis, Nanotechnology, 16, 1666, 10.1088/0957-4484/16/9/044
Landau, 1970
Heidelberg, 2006, A generalized description of the elastic properties of nanowires, Nano Lett., 6, 1101, 10.1021/nl060028u
Vahtrus, 2015, Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers, Mater. Charact., 107, 119, 10.1016/j.matchar.2015.07.004
Vahtrus, 2015, Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques, Mater. Charact., 100, 98, 10.1016/j.matchar.2014.12.019
Smith, 2010, Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric, ACS Nano, 4, 2356, 10.1021/nn1003088
Tiwari, 2016, Local structure investigation of (Co, Cu) co-doped ZnO nanocrystals and its correlation with magnetic properties, J. Phys. Chem. Solids, 90, 100, 10.1016/j.jpcs.2015.11.011
Li, 2016, A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles, Biosens. Bioelectron., 77, 378, 10.1016/j.bios.2015.09.066
Gandhi, 2014, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method, J. Phys. Chem. C, 118, 9715, 10.1021/jp411848t
Basu, 2014, Local structure investigation of cobalt and manganese doped ZnO nanocrystals and its correlation with magnetic properties, J. Phys. Chem. C, 118, 9154, 10.1021/jp411011c
Hadžic, 2016, Laser power influence on Raman spectra of ZnO(Co) nanoparticles, J. Phys. Chem. Solids, 91, 80, 10.1016/j.jpcs.2015.12.008
Park, 2004, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films, Appl. Phys. Lett., 84, 1338, 10.1063/1.1650915
Šutka, 2015, A straightforward and “green” solvothermal synthesis of Al doped zinc oxide plasmonic nanocrystals and piezoresistive elastomer nanocomposite, RSC Adv., 5, 63846, 10.1039/C5RA11910C
He, 2011, Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: in situ experiments, Phys. Rev. B, 83, 10.1103/PhysRevB.83.161302
Chen, 2007, Bending strength and flexibility of ZnO nanowires, Appl. Phys. Lett., 90, 043105, 10.1063/1.2432289
Hirth, 1982
Ashby, 2009