Effect of cobalt doping on the mechanical properties of ZnO nanowires

Materials Characterization - Tập 121 - Trang 40-47 - 2016
Mikk Vahtrus1, Andris Šutka1, Boris Polyakov2, Sven Oras1, Mikk Antsov1, Nicola Doebelin3,4, Rünno Lõhmus1, Ergo Nõmmiste1, Sergei Vlassov1
1Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu, Estonia
2Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
3RMS Foundation, Bischmattstrasse 12, Bettlach 2544, Switzerland
4Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, Bern, 3012, Switzerland

Tài liệu tham khảo

Wang, 2004, Zinc oxide nanostructures: growth, properties and applications, J. Phys. Condens. Matter, 16, R829, 10.1088/0953-8984/16/25/R01 Cui, 2012, Zinc oxide nanowires, Mater. Charact., 64, 43, 10.1016/j.matchar.2011.11.017 Yuhas, 2006, Transition-metal doped zinc oxide nanowires, Angew. Chem. Int. Ed., 45, 420, 10.1002/anie.200503172 Etacheri, 2012, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis, ACS Appl. Mater. Interfaces, 4, 2717, 10.1021/am300359h Wu, 2011, Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity, Mater. Lett., 65, 1794, 10.1016/j.matlet.2011.03.070 Mahmood, 2011, Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles, Mater. Chem. Phys., 130, 531, 10.1016/j.matchemphys.2011.07.018 Ullah, 2008, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater., 156, 194, 10.1016/j.jhazmat.2007.12.033 He, 2012, Local structure and photocatalytic property of sol–gel synthesized ZnO doped with transition metal oxides, J. Mater. Sci., 47, 3150, 10.1007/s10853-011-6149-5 Kuriakose, 2014, Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method, Phys. Chem. Chem. Phys., 16, 12741, 10.1039/c4cp01315h Lu, 2011, A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties, Nano Res., 4, 1144, 10.1007/s12274-011-0163-4 Kumar, 2014, Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route, J. Alloys Compd., 588, 681, 10.1016/j.jallcom.2013.11.127 Yu, 2014, Enhanced photocatalytic activity of Fe-doped ZnO nanoparticles synthesized via a two-step sol–gel method, J. Mater. Sci. Mater. Electron., 25, 3920, 10.1007/s10854-014-2107-8 Yin, 2015, Hierarchical nanostructures of nickel-doped zinc oxide: morphology controlled synthesis and enhanced visible-light photocatalytic activity, J. Alloys Compd., 618, 318, 10.1016/j.jallcom.2014.08.087 Roy, 2012, Effect of neodymium doping on structure, electrical and optical properties of nanocrystalline ZnO, Mater. Charact., 70, 1, 10.1016/j.matchar.2012.04.015 Wu, 2012, Solvothermal synthesis of Cu-doped ZnO nanowires with visible light-driven photocatalytic activity, Mater. Lett., 74, 236, 10.1016/j.matlet.2012.01.125 Xiao, 2007, Photocatalytic decolorization of methylene blue over Zn1−xCoxO under visible light irradiation, Mater. Sci. Eng. B, 142, 121, 10.1016/j.mseb.2007.06.021 Wang, 2015, Growth conditions control the elastic and electrical properties of ZnO nanowires, Nano Lett., 15, 7886, 10.1021/acs.nanolett.5b02852 Duncan, 2006, Role of point defects in the physical properties of fluorite oxides, J. Am. Ceram. Soc., 89, 3162, 10.1111/j.1551-2916.2006.01193.x Pan, 2014, Effect of boron vacancies on mechanical properties of ReB2 from first-principles calculation, Comput. Mater. Sci., 82, 12, 10.1016/j.commatsci.2013.09.018 Šutka, 2016, Co doped ZnO nanowires as visible light photocatalysts, Solid State Sci., 56, 54, 10.1016/j.solidstatesciences.2016.04.008 Liang, 2009, Magnetotransport in Co-doped ZnO nanowires, Nano Lett., 9, 892, 10.1021/nl8038184 Agrawal, 2008, Elasticity size effects in ZnO nanowires – a combined experimental-computational approach, Nano Lett., 8, 3668, 10.1021/nl801724b Desai, 2007, Mechanical properties of ZnO nanowires, Sensors Actuators A Phys., 134, 169, 10.1016/j.sna.2006.04.046 He, 2009, Diameter dependence of modulus in zinc oxide nanowires and the effect of loading modes: in situ experiments and universal core-shell approach, Appl. Phys. Lett., 95, 091912, 10.1063/1.3205102 Xu, 2010, Mechanical properties of ZnO nanowires under different loading modes, Nano Res., 3, 271, 10.1007/s12274-010-1030-4 Hoffmann, 2007, Fracture strength and Young's modulus of ZnO nanowires, Nanotechnology, 18, 205503, 10.1088/0957-4484/18/20/205503 Stan, 2007, Diameter-dependent radial and tangential elastic moduli of ZnO nanowires, Nano Lett., 7, 3691, 10.1021/nl071986e Jiang, 2014, Young's modulus of individual ZnO nanowires, Mater. Sci. Eng. A, 610, 1, 10.1016/j.msea.2014.05.027 Soomro, 2012, Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment, Nanoscale Res. Lett., 7, 146, 10.1186/1556-276X-7-146 Chen, 2006, Size dependence of Young's modulus in ZnO nanowire, Phys. Rev. Lett., 96, 075505, 10.1103/PhysRevLett.96.075505 Huang, 2006, In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles, J. Phys. Condens. Matter, 18, L179, 10.1088/0953-8984/18/15/L03 Zhou, 2006, Nanowire as pico-gram balance at workplace atmosphere, Solid State Commun., 139, 222, 10.1016/j.ssc.2006.06.004 Qin, 2012, Measuring true Young's modulus of a cantilevered nanowires: effect of clamping on resonance frequency, Small, 8, 2571, 10.1002/smll.201200314 Wen, 2008, Mechanical properties of ZnO nanowires, Phys. Rev. Lett., 101, 175502, 10.1103/PhysRevLett.101.175502 Manoharan, 2008, Synthesis and elastic characterization of zinc oxide nanowires, J. Nanomater., 849745 Song, 2005, Elastic property of vertically aligned nanowire, Nano Lett., 5, 1954, 10.1021/nl051334v Polyakov, 2011, Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope, Solid State Commun., 151, 1244, 10.1016/j.ssc.2011.05.045 Dorogin, 2013, Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling, Phys. Status Solidi B, 250, 305, 10.1002/pssb.201248445 Polyakov, 2012, In situ measurements of ultimate bending strength of CuO and ZnO nanowires, Eur. Phys. J. B, 85, 366, 10.1140/epjb/e2012-30430-6 Asthana, 2011, In situ observation of size-scale effects on the mechanical properties of ZnO nanowires, Nanotechnology, 22, 265712, 10.1088/0957-4484/22/26/265712 Huang, 2009, Size independence and doping dependence of bending modulus in ZnO nanowires, Gryst. Growth Des., 9, 1640, 10.1021/cg800535z Huang, 2007, Field emission of a single In-doped ZnO nanowire, J. Phys. Chem. C, 111, 9039, 10.1021/jp0666030 Doebelin, 2015, Profex: a graphical user interface for the Rietveld refinement program BGMN, J. Appl. Crystallogr., 48, 1573, 10.1107/S1600576715014685 Bergmann, 1998, BGMN – a new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations, 20, 5 Kisi, 1989, U parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction, Acta Crystallogr. C, 45, 186, 10.1107/S0108270189004269 Vlassov, 2016, Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations, Nanotechnology, 27, 335701, 10.1088/0957-4484/27/33/335701 Clifford, 2005, The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis, Nanotechnology, 16, 1666, 10.1088/0957-4484/16/9/044 Landau, 1970 Heidelberg, 2006, A generalized description of the elastic properties of nanowires, Nano Lett., 6, 1101, 10.1021/nl060028u Vahtrus, 2015, Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers, Mater. Charact., 107, 119, 10.1016/j.matchar.2015.07.004 Vahtrus, 2015, Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques, Mater. Charact., 100, 98, 10.1016/j.matchar.2014.12.019 Smith, 2010, Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric, ACS Nano, 4, 2356, 10.1021/nn1003088 Tiwari, 2016, Local structure investigation of (Co, Cu) co-doped ZnO nanocrystals and its correlation with magnetic properties, J. Phys. Chem. Solids, 90, 100, 10.1016/j.jpcs.2015.11.011 Li, 2016, A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles, Biosens. Bioelectron., 77, 378, 10.1016/j.bios.2015.09.066 Gandhi, 2014, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method, J. Phys. Chem. C, 118, 9715, 10.1021/jp411848t Basu, 2014, Local structure investigation of cobalt and manganese doped ZnO nanocrystals and its correlation with magnetic properties, J. Phys. Chem. C, 118, 9154, 10.1021/jp411011c Hadžic, 2016, Laser power influence on Raman spectra of ZnO(Co) nanoparticles, J. Phys. Chem. Solids, 91, 80, 10.1016/j.jpcs.2015.12.008 Park, 2004, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films, Appl. Phys. Lett., 84, 1338, 10.1063/1.1650915 Šutka, 2015, A straightforward and “green” solvothermal synthesis of Al doped zinc oxide plasmonic nanocrystals and piezoresistive elastomer nanocomposite, RSC Adv., 5, 63846, 10.1039/C5RA11910C He, 2011, Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: in situ experiments, Phys. Rev. B, 83, 10.1103/PhysRevB.83.161302 Chen, 2007, Bending strength and flexibility of ZnO nanowires, Appl. Phys. Lett., 90, 043105, 10.1063/1.2432289 Hirth, 1982 Ashby, 2009