Effect of chlorocholine chlorid on phenolic acids accumulation and polyphenols formation of buckwheat plants

Biological Research - Tập 47 - Trang 1-7 - 2014
Oksana Sytar1, Asel Borankulova2, Irene Hemmerich3, Cornelia Rauh3, Iryna Smetanska3,4
1Plant Physiology and Ecology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Ukraine
2Department of Technology of Food Products, Processing Industries and Biotechnology, Taraz State University named after MK Dulati, Taraz, Republic of Kazakhstan
3Department of Methods of Food Biotechnology, Berlin University of Technology, Institute of Food Technology and Food Chemistry, Germany
4Agricultural Faculty, Department of Plant Food Processing, University of Applied Science Weihenstephan-Triesdorf, Weidenbach, Germany

Tóm tắt

Effect of chlorocholine chloride (CCC) on phenolic acids composition and polyphenols accumulation in various anatomical parts (stems, leaves and inflorescences) of common buckwheat (Fagopyrum esculentum Moench) in the early stages of vegetation period were surveyed. Treatment of buckwheat seeds with 2% of CCC has been increased content of total phenolics in the stems, leaves and inflorescences. On analyzing the different parts of buckwheat plants, 9 different phenolic acids – vanilic acid, ferulic acid, trans-ferulic acid, chlorogenic acid, salycilic acid, cinamic acid, p-coumaric acid, p-anisic acid, methoxycinamic acid and catechins were identified. The levels of identified phenolic acids varied not only significantly among the plant organs but also between early stages of vegetation period. Same changes as in contents of chlorogenic acid, ferulic acid, trans-ferulic acid were found for content of salycilic acid. The content of these phenolic acids has been significant increased under effect of 2% CCC treatment at the phase I (formation of buds) in the stems and at the phase II (beginning of flowering) in the leaves and then inflorescences respectively. The content of catechins as potential buckwheat antioxidants has been increased at the early stages of vegetation period after treatment with 2% CCC. The obtained results suggest that influence of CCC on the phenolics composition can be a result of various mechanisms of CCC uptake, transforming and/or its translocation in the buckwheat seedlings.

Tài liệu tham khảo

Bonafaccia G, Marocchini M, Kreft I: Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem 2003, 80: 9-15. 10.1016/S0308-8146(02)00228-5 Aufhammer W: Pseudogetreidearten – Buchweizen, Reismelde und Amarant; Herkunft, Nutzung und Anbau. J Agr Crop Sci 2003, 189(3):197. Ikeda K: Buckwheat: composition, chemistry and processing. Adv Food Nutr Res 2002, 44: 395-434. Zielinski H, Kozlowska H: Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem 2000, 48(6):2008-2016. 10.1021/jf990619o Watanabe M, Ohshi Y, Tsushida T: Antioxidant compounds from buckwheat ( Fagopyrum esculentum Moench) hulls. J Agric Food Chem 1997, 45: 1039-1044. 10.1021/jf9605557 Watanabe M: Catechins as antioxidants from buckwheat ( Fagopyrum esculentum Moench) groats. J Agric Food Chem 1998, 46: 839-845. 10.1021/jf9707546 Kim HJ, Park KJ, Lim JH: Metabolomic analysis of phenolic compounds in buckwheat ( Fagopyrum esculentum M.) sprouts treated with methyl jasmonate. J Agric Food Chem 2011, 59(10):5707-5713. 10.1021/jf200396k Sytar O, Zhenzhen C, Brestic M, Prasad MNV, Taran N, Smetanska I: Foliar applied nickel on buckwheat ( Fagopyrum esculentu m) induced phenolic compounds as potential antioxidants. Clean - Soil, Air, Water 2013, 41(11):1129-1137. 10.1002/clen.201200512 Hahlbrock K, Scheel D: Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 1989, 40: 347-369. 10.1146/annurev.pp.40.060189.002023 Winkel-Shirley B: Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 2002, 5: 218-223. 10.1016/S1369-5266(02)00256-X Šebestík О, Marques SM, Falé PL, Santos S, Arduíno DM, Cardoso SM, Oliveira CR, Serralheiro MLM, Santos MA: Bifunctional phenolic-choline conjugates as anti-oxidants and acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2011, 26(4):485-497. 10.3109/14756366.2010.529806 Kreslavskiia VD, Lubimova VY, Kotova LM, Kotov AA: Effect of common bean seedling pretreatment with chlorocholine chloride on photosystem II tolerance to UVB radiation, phytohormone content, and hydrogen peroxide content. Russ J Plant Physiol 2011, 58(2):324-329. 10.1134/S1021443711020087 Huiqun W, Langtao X, Jianhua T, Fulai L: Foliar application of chlorocholine chloride improves leaf mineral nutrition, antioxidant enzyme activity, and tuber yield of potato ( Solanum tuberosum L.). Scient Horticul 2010, 125: 521-523. 10.1016/j.scienta.2010.04.024 Jain VK, Guruprasad KN: Effect of chlorocholine chloride and gibberellic acid on the anthocyanin synthesis in radish seedlings. Physiol Plant 1989, 75: 233-236. 10.1111/j.1399-3054.1989.tb06174.x Petti S, Scully C: Polyphenols, oral health and disease: A review. J Dent 2009, 37(6):413-423. 10.1016/j.jdent.2009.02.003 Sivaci A, Duman S: Evaluation of seasonal antioxidant activity and total phenolic compounds in stems and leaves of some almond ( Prunus amygdalus L.) varieties. Biol Res 2014., 47: doi:10.1186/0717-6287-47-9 Hanson KR, Havir EA: Phenylalanine ammonia-lyase. In The biochemistry of plants. Edited by: Stumpf PK, Conn EE. New York: Academic; 1981:577-625. Jahnen W, Hahlbrock K: Differential regulation and tissue-specific distribution of enzymes of phenylpropanoid pathways in developing parsley seedlings. Planta 1988, 173: 197-204. 10.1007/BF00403011 Schmelzer E, Jahnen W, Hahlbrock K: In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid products in epidermal cells of parsley leaves. Proc Natl Acad Sci U S A 1988, 85: 2989-2993. 10.1073/pnas.85.9.2989 Niggeweg R, Michael AJ, Martin C: Engineering plants with increased levels of antioxidant chlorogenic acid. Nat Biotechnol 2004, 22: 746-754. 10.1038/nbt966 Schützendübel A, Polle A: Plant responses to abiotic stresses: heavy metal‒induced oxidative stress and protection by mycorrhization. J Exp Bot 2001, 53(372):1351-1365. Pramod KS, Ramendra S, Shivani S: Cinnamic acid induced changes in reactive oxygen species scavenging enzymes and protein profile in maize ( Zea mays L.) plants grown under salt stress. Annu Rev Plant Biol 2013, 19(1):53-59. Xuezheng W, Hua W, Fengzhi W, Bo L: Effects of cinnamic acid on the physiological characteristics of cucumber seedlings under salt stress. Front Agric China 2007, 1(1):58-61. 10.1007/s11703-007-0010-2 Hayat Q, Hayat S, Irfan M, Ahmad A: Effect of exogenous salicylic acid under changing environment: A review. Environ Exp Bot 2010, 8: 14-25. Stitcher L, Mauch-Mani B, Metraux JP: Systemic acquired resistance. Annu Rev Plant Pathol 1997, 35: 235-270. Molina A, Bueno P, Marín MC, Rodríguez-Rosales MP, Belver A, Venema K: Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol 2002, 156: 409-415. 10.1046/j.1469-8137.2002.00527.x Nemeth M, Janda T, Horvath E, Paldi E, Szalai G: Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 2002, 162: 569-574. 10.1016/S0168-9452(01)00593-3 Munne-Bosch S, Peñuelas J: Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 2003, 217: 758-766. 10.1007/s00425-003-1037-0 Shi Q, Zhu Z: Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exper Bot 2008, 63: 317-326. 10.1016/j.envexpbot.2007.11.003 Rivas-San Vicente M, Plasencia J: Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 2011, 62(10):3321-3338. 10.1093/jxb/err031 Fariduddin Q, Hayat S, Ahmad A: Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea . Photosynthetica 2003, 41: 281-284. Khodary SFA: Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 2004, 6: 5-8. Hayat S, Fariduddin Q, Ali B, Ahmad A: Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron Hung 2005, 53: 433-437. 10.1556/AAgr.53.2005.4.9 Hatayama T, Takeno K: The metabolic pathway of salicylic acid rather than of chlorogenic acid is involved in the stress-induced flowering of Pharbitis nil. J Plant Physiol 2003, 160(5):461-467. 10.1078/0176-1617-01041 Hayata Q, Hayata S, Irfana M, Ahmad A: Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 2010, 68(1):14-25. 10.1016/j.envexpbot.2009.08.005 Sytar O, Brestic M, Rai M, Shao HB: Plant phenolic compounds for food, pharmaceutical and cosmetiсs production. J Med Plants Res 2012, 6(13):2526-2539. Singleton VL, Rossi JA: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965, 16: 144-158.