Effect of chip rate on the ranging accuracy in a regenerative pseudo-noise ranging system

Jianwen Jiang1, Wenguo Yang2, Chaojie Zhang2, Xiaojun Jin2, Zhonghe Jin2
1(Zhejiang University)
2Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berner, J.B., Layland, J.M., Kinman, P.W., Smith, J.R., 1999. Regenerative Pseudo-Noise Ranging for Deep-Space Applications. TMO Progress Report 42-137, Jet Propulsion Laboratory, Pasadena, CA.

Boscagli, G., Holsters, P., Simone, L., Vassallo, E., Visintin, M., 2007. Regenerative Pseudo-Noise Ranging: Overview of Current ESA’s Standardisation Activities. 4th ESA Int. Workshop on Tracking, Telemetry and Command Systems for Space Applications, p.1–20.

CCSDS 414.0-G-1, 2010. Report Concerning Space Data System Standards. Pseudo-Noise (PN) Ranging Systems, Green Book. Available from http://public.ccsds.org/publications/archive/414x0g1.pdf [Accessed on Apr. 16, 2010].

Ding, F., Chen, T.W., 2007. Performance analysis of multi-innovation gradient type identification methods. Automatica, 43(1):1–14. [doi:10.1016/j.automatica.2006.07.024]

Ding, F., Liu, P.X., Yang, H.Z., 2008. Parameter identification and intersample output estimation for dual-rate systems. IEEE Trans. Syst. Man Cybern. Syst. Humans, 38(4): 966–975. [doi:10.1109/TSMCA.2008.923030]

Ding, F., Liu, P.X., Liu, G.J., 2009a. Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises. Signal Process., 89(10):1883–1890. [doi:10.1016/j.sigpro.2009. 03.020]

Ding, F., Qiu, L., Chen, T.W., 2009b. Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. Automatica, 45(2):324–332. [doi:10.1016/j.automatica.2008.08.007]

Ding, F., Liu, P.X., Liu, G.J., 2010. Gradient based and least-square based iterative identification methods for OE and OEMA systems. Dig. Signal Process., 20(3):664–677. [doi:10.1016/j.dsp.2009.10.012]

Hamkins, J., 1999. Ranging Considerations for the MCAS Transceiver. Interoffice Memorandum, Jet Propulsion Laboratory, Pasadena, CA, USA, p.1–12.

Han, L.L., Ding, F., 2009. Multi-innovation stochastic gradient algorithms for multi-input multi-output systems. Dig. Signal Process., 19(4):545–554. [doi:10.1016/j.dsp.2008.12.002]

Holsters, P., Boscagli, G., Vassallo, E., 2008. Pseudo-Noise Ranging for Future Transparent and Regenerative Channels. SpaceOps Conf., No. AIAA-2008-3277.

Kinman, P.W., Berner, J.B., 2003. Two-Way Ranging During Early Mission Phase. IEEE Aerospace Conf., No. 1061.

Liu, Y.J., Xie, L., Ding, F., 2009a. An auxiliary model based on a recursive least-squares parameter estimation algorithm for non-uniformly sampled multirate systems. J. Syst. Control Eng., 223(4):445–454. [doi:10.1243/09596518JSCE686]

Liu, Y.J., Xiao, Y.S., Zhao, X.L., 2009b. Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. Appl. Math. Comput., 215(4):1477–1483. [doi:10.1016/j.amc.2009.07. 012]

Massey, J.L., Boscagli, G., Vassallo, E., 2007. Regenerative pseudo-noise (PN) ranging sequences for deep-space missions. Int. J. Sat. Commun., 25(3):285–304. [doi:10. 1002/sat.877]

Quirk, K.J., Srinivasan, M., 2006. PN code tracking using noncommensurate sampling. IEEE Trans. Commun., 54(10):1845–1856. [doi:10.1109/TCOMM.2006.881259]

Ruggier, C.J., Berner, J.B., Kinman, P.W., 2004. 214 Pseudo-Noise and Regenerative Ranging. DSMS Telecommunications Link Design Handbook 810-005 (Revision E. Second), Jet Propulsion Laboratory, Pasadena, CA, USA, p.1–35.

Wang, B., 2004. The application of residues theorem in the complex pseudorandom code range detection system. Radio Eng. China, 34(8):23–24 (in Chinese).

Wang, D.Q., Ding, F., 2010. Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems. Dig. Signal Process., 20(3):750–762. [doi:10.1016/j.dsp.2009. 09.002]