Effect of chemical structure and molecular weight on the properties of lignin-based ultrafine carbon fibers

International Journal of Biological Macromolecules - Tập 187 - Trang 594-602 - 2021
Jixing Bai1, Shichao Wang1, Yajun Li1, Zhe Wang1, Jianguo Tang1
1Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China

Tài liệu tham khảo

Laurichesse, 2014, Chemical modification of lignins: towards biobased polymers, Prog. Polym. Sci., 39, 1266, 10.1016/j.progpolymsci.2013.11.004 Zhang, 2019, Unlocking the response of lignin structure for improved carbon fiber production and mechanical strength, Green Chem., 21, 4981, 10.1039/C9GC01632E Wang, 2021, Lignin-based carbon fibers: formation, modification and potential applications, Green Energy Environ. Chatterjee, 2015, Lignin-derived advanced carbon materials, ChemSuSchem, 8, 3941, 10.1002/cssc.201500692 Upton, 2016, Strategies for the conversion of lignin to high-value polymeric materials: review and perspective, Chem. Rev., 116, 2275, 10.1021/acs.chemrev.5b00345 Herou, 2021, High-density lignin-derived carbon nanofiber supercapacitors with enhanced volumetric energy density, Adv. Sci. Wang, 2020, Kraft lignin-based piezoresistive sensors: effect of chemical structure on the microstructure of ultrathin carbon fibers, Int. J. Biol. Macromol., 151, 730, 10.1016/j.ijbiomac.2020.02.225 Singh, 2021, Kraft lignin-derived free-standing carbon nanofibers mat for high-performance all-solid-state supercapacitor, Mater. Chem. Phys., 264, 10.1016/j.matchemphys.2021.124454 Wang, 2020, Tuning the microstructure and electrochemical behavior of lignin-based ultrafine carbon fibers via hydrogen-bonding interaction, Int. J. Biol. Macromol., 157, 706, 10.1016/j.ijbiomac.2019.11.235 Svinterikos, 2020, Electrospun lignin-derived carbon micro- and nanofibers: a review on precursors, properties, and applications, ACS Sustain. Chem. Eng., 8, 13868, 10.1021/acssuschemeng.0c03246 Ragauskas, 2014, Lignin valorization: improving lignin processing in the biorefinery, Science, 344, 709-, 10.1126/science.1246843 Culebras, 2018, Understanding the thermal and dielectric response of organosolv and modified Kraft lignin as a carbon fibre precursor, Green Chem., 20, 4461, 10.1039/C8GC01577E Zakzeski, 2010, The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev., 110, 3552, 10.1021/cr900354u Chakar, 2004, Review of current and future softwood Kraft lignin process chemistry, Ind. Crop. Prod., 20, 131, 10.1016/j.indcrop.2004.04.016 Hosseinaei, 2016, Role of physicochemical structure of organosolv hardwood and herbaceous lignins on carbon fiber performance, ACS Sustain. Chem. Eng., 4, 5785, 10.1021/acssuschemeng.6b01828 Li, 2017, Molecular weight and uniformity define the mechanical performance of lignin-based carbon fiber, J. Mater. Chem. A, 5, 12740, 10.1039/C7TA01187C Liu, 2018, Lignin/Polyacrylonitrile carbon fibers: the effect of fractionation and purification on properties of derived carbon fibers, ACS Sustain. Chem. Eng., 6, 8554, 10.1021/acssuschemeng.8b00868 Wang, 2015, Low cost carbon fibers from bio-renewable lignin/poly(lactic acid) (PLA) blends, Compos. Sci. Technol., 119, 20, 10.1016/j.compscitech.2015.09.021 Wang, 2016, Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes, Compos. Sci. Technol., 128, 116, 10.1016/j.compscitech.2016.03.018 Jiang, 2017, Comparison of the structural characteristics of cellulolytic enzyme lignin preparations isolated from wheat straw stem and leaf, ACS Sustain. Chem. Eng., 5, 342, 10.1021/acssuschemeng.6b01710 Ayutsede, 2005, Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat, Polymer, 46, 1625, 10.1016/j.polymer.2004.11.029 Heikkinen, 2003, Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin, J. Am. Chem. Soc., 125, 4362, 10.1021/ja029035k Wang, 2017, Structural characteristics of lignin macromolecules from different eucalyptus species, ACS Sustain. Chem. Eng., 5, 11618, 10.1021/acssuschemeng.7b02970 Yuan, 2011, Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy, J. Agric. Food Chem., 59, 10604, 10.1021/jf2031549 Wen, 2013, Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology, Materials, 6, 359, 10.3390/ma6010359 Capanema, 2005, Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy, J. Agr. Food Chem., 53, 9639, 10.1021/jf0515330 Li, 2017, The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar, Biotechnol. Biofuels, 10, 237, 10.1186/s13068-017-0926-6 Chen, 2016, Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw, Sci. Rep., 10, 1157 Samuel, 2011, Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis, Polym. Degrad. Stabil., 96, 2002, 10.1016/j.polymdegradstab.2011.08.015 Horowitz, 1963, A new analysis of thermogravimetric traces, Anal. Chem., 35, 1464, 10.1021/ac60203a013 Pandey, 1999, A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy, J. Appl. Polym. Sci., 71, 1969, 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D Faix, 1991, Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spectroscopy, J. Anal. Appl. Pyrolysis, 21, 147, 10.1016/0165-2370(91)80022-Z Roman, 2019, Electrospun lignin-based twisted carbon nanofibers for potential microelectrodes applications, Carbon, 145, 556, 10.1016/j.carbon.2019.01.036 Dai, 2018, High-strength lignin-based carbon fibers via a low-energy method, RSC Adv., 8, 1218, 10.1039/C7RA10821D K.D. S, 1989, Characterization of diamond films by raman spectroscopy, J. Mater. Res., 4, 385, 10.1557/JMR.1989.0385 Culebras, 2019, Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials, ChemSuSchem, 12, 4516, 10.1002/cssc.201901562