Effect of chemical structure and molecular weight on the properties of lignin-based ultrafine carbon fibers
Tài liệu tham khảo
Laurichesse, 2014, Chemical modification of lignins: towards biobased polymers, Prog. Polym. Sci., 39, 1266, 10.1016/j.progpolymsci.2013.11.004
Zhang, 2019, Unlocking the response of lignin structure for improved carbon fiber production and mechanical strength, Green Chem., 21, 4981, 10.1039/C9GC01632E
Wang, 2021, Lignin-based carbon fibers: formation, modification and potential applications, Green Energy Environ.
Chatterjee, 2015, Lignin-derived advanced carbon materials, ChemSuSchem, 8, 3941, 10.1002/cssc.201500692
Upton, 2016, Strategies for the conversion of lignin to high-value polymeric materials: review and perspective, Chem. Rev., 116, 2275, 10.1021/acs.chemrev.5b00345
Herou, 2021, High-density lignin-derived carbon nanofiber supercapacitors with enhanced volumetric energy density, Adv. Sci.
Wang, 2020, Kraft lignin-based piezoresistive sensors: effect of chemical structure on the microstructure of ultrathin carbon fibers, Int. J. Biol. Macromol., 151, 730, 10.1016/j.ijbiomac.2020.02.225
Singh, 2021, Kraft lignin-derived free-standing carbon nanofibers mat for high-performance all-solid-state supercapacitor, Mater. Chem. Phys., 264, 10.1016/j.matchemphys.2021.124454
Wang, 2020, Tuning the microstructure and electrochemical behavior of lignin-based ultrafine carbon fibers via hydrogen-bonding interaction, Int. J. Biol. Macromol., 157, 706, 10.1016/j.ijbiomac.2019.11.235
Svinterikos, 2020, Electrospun lignin-derived carbon micro- and nanofibers: a review on precursors, properties, and applications, ACS Sustain. Chem. Eng., 8, 13868, 10.1021/acssuschemeng.0c03246
Ragauskas, 2014, Lignin valorization: improving lignin processing in the biorefinery, Science, 344, 709-, 10.1126/science.1246843
Culebras, 2018, Understanding the thermal and dielectric response of organosolv and modified Kraft lignin as a carbon fibre precursor, Green Chem., 20, 4461, 10.1039/C8GC01577E
Zakzeski, 2010, The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev., 110, 3552, 10.1021/cr900354u
Chakar, 2004, Review of current and future softwood Kraft lignin process chemistry, Ind. Crop. Prod., 20, 131, 10.1016/j.indcrop.2004.04.016
Hosseinaei, 2016, Role of physicochemical structure of organosolv hardwood and herbaceous lignins on carbon fiber performance, ACS Sustain. Chem. Eng., 4, 5785, 10.1021/acssuschemeng.6b01828
Li, 2017, Molecular weight and uniformity define the mechanical performance of lignin-based carbon fiber, J. Mater. Chem. A, 5, 12740, 10.1039/C7TA01187C
Liu, 2018, Lignin/Polyacrylonitrile carbon fibers: the effect of fractionation and purification on properties of derived carbon fibers, ACS Sustain. Chem. Eng., 6, 8554, 10.1021/acssuschemeng.8b00868
Wang, 2015, Low cost carbon fibers from bio-renewable lignin/poly(lactic acid) (PLA) blends, Compos. Sci. Technol., 119, 20, 10.1016/j.compscitech.2015.09.021
Wang, 2016, Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes, Compos. Sci. Technol., 128, 116, 10.1016/j.compscitech.2016.03.018
Jiang, 2017, Comparison of the structural characteristics of cellulolytic enzyme lignin preparations isolated from wheat straw stem and leaf, ACS Sustain. Chem. Eng., 5, 342, 10.1021/acssuschemeng.6b01710
Ayutsede, 2005, Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat, Polymer, 46, 1625, 10.1016/j.polymer.2004.11.029
Heikkinen, 2003, Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin, J. Am. Chem. Soc., 125, 4362, 10.1021/ja029035k
Wang, 2017, Structural characteristics of lignin macromolecules from different eucalyptus species, ACS Sustain. Chem. Eng., 5, 11618, 10.1021/acssuschemeng.7b02970
Yuan, 2011, Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy, J. Agric. Food Chem., 59, 10604, 10.1021/jf2031549
Wen, 2013, Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology, Materials, 6, 359, 10.3390/ma6010359
Capanema, 2005, Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy, J. Agr. Food Chem., 53, 9639, 10.1021/jf0515330
Li, 2017, The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar, Biotechnol. Biofuels, 10, 237, 10.1186/s13068-017-0926-6
Chen, 2016, Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw, Sci. Rep., 10, 1157
Samuel, 2011, Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis, Polym. Degrad. Stabil., 96, 2002, 10.1016/j.polymdegradstab.2011.08.015
Horowitz, 1963, A new analysis of thermogravimetric traces, Anal. Chem., 35, 1464, 10.1021/ac60203a013
Pandey, 1999, A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy, J. Appl. Polym. Sci., 71, 1969, 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
Faix, 1991, Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spectroscopy, J. Anal. Appl. Pyrolysis, 21, 147, 10.1016/0165-2370(91)80022-Z
Roman, 2019, Electrospun lignin-based twisted carbon nanofibers for potential microelectrodes applications, Carbon, 145, 556, 10.1016/j.carbon.2019.01.036
Dai, 2018, High-strength lignin-based carbon fibers via a low-energy method, RSC Adv., 8, 1218, 10.1039/C7RA10821D
K.D. S, 1989, Characterization of diamond films by raman spectroscopy, J. Mater. Res., 4, 385, 10.1557/JMR.1989.0385
Culebras, 2019, Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials, ChemSuSchem, 12, 4516, 10.1002/cssc.201901562