Tác động của nguồn carbon lên đặc điểm phát thải nitơ oxit và tính chất bùn trong quá trình xử lý nước thải kỵ khí/aerobic

Springer Science and Business Media LLC - Tập 28 - Trang 57557-57568 - 2021
Xu Yan1, Jie Yang1, Dongli Guo1, Jiahui Ma1, Xianfa Su1, Jianhui Sun1
1School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, China

Tóm tắt

Các nguồn carbon là một thông số quan trọng trong các quy trình xử lý nước thải và liên quan chặt chẽ đến hiệu quả xử lý cũng như phát thải nitrous oxide (N2O). Trong nghiên cứu này, ba bể phản ứng tuần hoàn đồng thời (SBR) đã được xử lý với axit axetic, axit propionic và hỗn hợp 1:1 của cả hai axit (được tính theo COD) nhằm nghiên cứu tác động của các nguồn carbon lên sự hình thành N2O và các đặc tính của bùn (bao gồm hàm lượng polymer nội bào, thành phần chất polyme ngoại bào (EPS), phân bố kích thước hạt, khả năng lắng, và cấu trúc cộng đồng vi sinh vật). Kết quả cho thấy hiệu suất loại bỏ COD, NH4+-N và TP cao nhất (92,2%, 100% và 82,3%, tương ứng) đạt được bởi bể phản ứng sử dụng hỗn hợp axit làm nguồn carbon, trong khi bể phản ứng sử dụng axit axetic có tỷ lệ loại bỏ TN cao nhất (82,6%) và tỷ lệ chuyển đổi N2O–N thấp nhất (1,4%, dựa trên loại bỏ TN). Bể phản ứng với nguồn carbon từ hỗn hợp axit sản xuất hàm lượng polyhydroxyalkanoate (PHA) cao nhất, dẫn đến sự gia tăng phát thải N2O từ con đường khử nitrát hiếu khí. SBR với nguồn carbon hỗn hợp axit cũng có nồng độ EPS cao nhất, dẫn đến kích thước hạt lớn nhất và khả năng lắng thấp nhất của bông bùn giữa các SBR. Kết quả phân tích vi sinh cho thấy sự khác biệt trong các nguồn carbon dẫn đến sự biến đổi trong cộng đồng vi sinh vật cũng như trong độ phong phú tương đối của các vi sinh vật chức năng tham gia vào các quá trình loại bỏ nitơ sinh học. Hỗn hợp axit thúc đẩy sự phát triển của vi khuẩn oxi hóa amoni (AOB), những vi khuẩn này thực hiện con đường phát sinh N2O chính của các phản ứng sinh học khử nitrat hiếu khí. Nguồn carbon từ axit axetic thúc đẩy sự phát triển của vi khuẩn khử nitrat (DNB), dẫn đến tỷ lệ loại bỏ TN cao nhất. Nghiên cứu này cung cấp một hiểu biết toàn diện về tác động của các nguồn carbon đến sự hình thành N2O và các đặc tính bùn đối với các trạm xử lý nước thải (WWTPs).

Từ khóa

#carbon source #wastewater treatment #nitrous oxide emission #sludge properties #microbial community

Tài liệu tham khảo

Asaf S, Numan M, Khan AL, Al-Harrasi A (2020) Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol 40:138–152. https://doi.org/10.1080/07388551.2019.1709793 Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161. https://doi.org/10.1016/S0168-1656(98)00126-6 Cai JF, Pan AD, Li YL, Xiao YY, Zhou Y, Chen CJ, Sun FQ, Su XM (2021) A novel strategy for enhancing anaerobic biodegradation of an anthraquinone dye reactive blue 19 with resuscitation-promoting factors. Chemosphere 263:127922. https://doi.org/10.1016/j.chemosphere.2020.127922 CEPB (2004) Standard methods for examination of water and wastewater, 4th edn. CESP, Beijing Chai HX, Deng SP, Zhou XY, Su CR, Xiang Y, Yang Y, Shao ZY, Gu L, Xu X, Ji FY, He Q (2019) Nitrous oxide emission mitigation during low-carbon source wastewater treatment: effect of external carbon source supply strategy. Environ Sci Pollut Res 26:23095–23107. https://doi.org/10.1007/s11356-019-05516-0 Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710. https://doi.org/10.1021/es034354c Chen M, Zhou XF, Chen XY, Cai QH, Zeng JX, Zhou SG (2020) Mechanisms of nitrous oxide emission during photoelectrotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Water Res 172:115501. https://doi.org/10.1016/j.watres.2020.115501 Comte S, Guibaud G, Baudu M (2006) Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochem 41:815–823. https://doi.org/10.1016/j.procbio.2005.10.014 Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 https://pubs.acs.org/sharingguidelines Elefsiniotis P, Li D (2006) The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochem Eng J 28:148–155. https://doi.org/10.1016/j.bej.2005.10.004 Frison N, Chiumenti A, Katsou E, Malamis S, Bolzonella D, Fatone F (2015) Mitigating off-gas emissions in the biological nitrogen removal via nitrite process treating anaerobic effluents. J Clean Prod 93:126–133. https://doi.org/10.1016/j.jclepro.2015.01.017 Geyik AG, Kilic B, Cecen F (2016) Extracellular polymeric substances (EPS) and surface properties of activated sludges: effect of organic carbon sources. Environ Sci Pollut Res 23:1653–1663. https://doi.org/10.1007/s11356-015-5347-0 Gruber W, Villez K, Kipf M, Wunderlin P, Siegrist H, Vogt L, Joss A (2020) N2O emission in full-scale wastewater treatment: proposing a refined monitoring strategy. Sci Total Environ 699:134157. https://doi.org/10.1016/j.scitotenv.2019.134157 Guo X, Wang X, Liu JX (2016) Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation. Sci Rep 6:28391. https://doi.org/10.1038/srep28391 Hanaki K, Hong Z, Matsuo T (1992) Production of nitrous oxide gas during denitrification of wastewater. Water Sci Technol 26:1027–1036 https://iwaponline.com/wst/article-pdf/26/5-6/1027/113302/1027.pdf He QL, Chen L, Zhang SJ, Chen RF, Chen HY (2019) Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment. Bioresour Technol 271:48–58. https://doi.org/10.1016/j.biortech.2018.09.102 Hu Z, Zhang J, Li SP, Xie HJ (2013) Impact of carbon source on nitrous oxide emission from anoxic/oxic biological nitrogen removal process and identification of its emission sources. Environ Sci Pollut Res 20:1059–1069. https://doi.org/10.1007/s11356-012-1018-6 Hu Z, Zhang J, Li SP, Xie HJ, Wang JH, Zhang TT, Li YR, Zhang HY (2010) Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs). J Biosci Bioeng 109:487–491. https://doi.org/10.1016/j.jbiosc.2009.11.001 IPCC (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. CUP, United Kingdom IPCC (2014) Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Switzerland Jia WL, Zhang J, Li PZ, Xie HJ, Wu J, Wang JH (2011) Nitrous oxide emissions from surface flow and subsurface flow constructed wetland microcosms: effect of feeding strategies. Ecol Eng 37:1815–1821. https://doi.org/10.1016/j.ecoleng.2011.06.019 Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, Loosdrecht MCM (2009) Nitrous oxide emission during wastewater treatment. Water Res 43:4093–4103. https://doi.org/10.1016/j.watres.2009.03.001 Kimochi Y, Inamori Y, Mizuochi M, Xu KQ, Matsumura M (1998) Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration. J Ferment Bioeng 86:202–206 Law Y, Lant P, Yuan Z (2011) The effect of pH on N2O production under aerobic conditions in a partial nitritation system. Water Res 45:5934–5944. https://doi.org/10.1016/j.watres.2011.08.055 Law YY, Ye L, Pan YT, Yuan ZG (2012) Nitrous oxide emissions from wastewater treatment processes. Philos Trans R Soc Lond Ser B Biol Sci 367:1265–1277. https://doi.org/10.1098/rstb.2011.0317 Li XY, Yang SF (2007) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41:1022–1030. https://doi.org/10.1016/j.watres.2006.06.037 Lin CH, Chang YJ, Chang YT, Chang CY, Chang YS (2010) The relationship of wastewater treatments and microbial community structures on different area of a constructed wetland. J Biotechnol 150:258–258. https://doi.org/10.1016/j.jbiotec.2010.09.148 Liu H, Fang HHP (2002) Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95:249–256. https://doi.org/10.1016/S0168-1656(02)00025-1 Liwarska-Bizukojć E, Chojnacki J, Klink M, Olejnik D (2018) Effect of the type of the external carbon source on denitrification kinetics of wastewater. Desalin Water Treat 101:143–150. https://doi.org/10.5004/dwt.2018.21758 Maddela NR, Sheng B, Yuan S, Zhou ZB, Villamar-Torres R, Meng FG (2019) Roles of quorum sensing in biological wastewater treatment: a critical review. Chemosphere 221:616–629. https://doi.org/10.1016/j.chemosphere.2019.01.064 Massara TM, Malamis S, Guisasola A, Baeza JA, Noutsopoulos C, Katsou E (2017) A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci Total Environ 596-597:106–123. https://doi.org/10.1016/j.scitotenv.2017.03.191 Ni BJ, Yu HQ (2012) Microbial products of activated sludge in biological wastewater treatment systems: a critical review. Crit Rev Environ Sci Technol 42:187–223. https://doi.org/10.1080/10643389.2010.507696 Nouha K, Kumar RS, Balasubramanian S, Tyagi RD (2018) Critical review of EPS production, synthesis and composition for sludge flocculation. J Environ Sci 66:225–245. https://doi.org/10.1016/j.jes.2017.05.020 Oehmen A, Keller-Lehmann B, Zeng RJ, Yuan ZJ, Keller J (2005) Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J Chromatogr A 1070:131–136. https://doi.org/10.1016/j.chroma.2005.02.020 Peng L, Ni B, Ye L, Yuan Z (2015) The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge. Water Res 73:29–36. https://doi.org/10.1016/j.watres.2015.01.021 Racz L, Datta T, Goel RK (2010) Organic carbon effect on nitrifying bacteria in a mixed culture. Water Sci Technol 61:2951–2956. https://doi.org/10.2166/wst.2010.061 Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. https://doi.org/10.1126/science.1176985 Reino C, Van Loosdrecht MCM, Carrera J, Perez J (2017) Effect of temperature on N2O emissions from a highly enriched nitrifying granular sludge performing partial nitritation of a low-strength wastewater. Chemosphere 185:336–343. https://doi.org/10.1016/j.chemosphere.2017.07.017 Schmidt I (2009) Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha. Curr Microbiol 59:130–138. https://doi.org/10.1007/s00284-009-9409-8 Shao XX, Zhao LL, Sheng XC, Wu M (2020) Effects of influent salinity on water purification and greenhouse gas emissions in lab-scale constructed wetlands. Environ Sci Pollut Res 27:21487–21496. https://doi.org/10.1007/s11356-020-08497-7 Sheng GP, Yu HQ (2006) Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res 40:1233–1239. https://doi.org/10.1016/j.watres.2006.01.023 Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol Adv 28:882–894. https://doi.org/10.1016/j.biotechadv.2010.08.001 Shi YH, Huang JH, Zeng GM, Gu YL, Chen YN, Hu Y, Tang B, Zhou JX, Yang Y, Shi LX (2017) Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. Chemosphere 180:396–411. https://doi.org/10.1016/j.chemosphere.2017.04.042 Stamatelatou K, Tsagarakis KP (2015) Sewage treatment plants: economic evaluation of innovative technologies for energy efficiency. IWA Publishing, United Kingdom Sun XF, Wang SG, Zhang XM et al (2009) Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules. J Colloid Interface Sci 335:11–17. https://doi.org/10.1016/j.jcis.2009.03.088 Sun FQ, Zhang WJ, Jiang GL, Liu YX, Wu SW, Wu D, Su XM, Chen JR, Lin HJ, Yan Z (2020) Effective biological nitrogen process and nitrous oxide emission characteristics for the treatment of landfill leachate with low carbon-to-nitrogen ratio. J Clean Prod 268:122289. https://doi.org/10.1016/j.jclepro.2020.122289 Wang H, Deng H, Ma L, Ge LY (2014) The effect of carbon source on extracellular polymeric substances production and its influence on sludge floc properties. J Chem Technol Biotechnol 89:516–521. https://doi.org/10.1002/jctb.4147 Wang Z, Meng Y, Fan T, Du Y, Tang J, Fan SS (2015) Phosphorus removal and N2O production in anaerobic/anoxic denitrifying phosphorus removal process: long-term impact of influent phosphorus concentration. Bioresour Technol 179:585–594. https://doi.org/10.1016/j.biortech.2014.12.016 Wang L, Shen N, Oehmen A, Zhou Y (2020a) The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs). Environ Res 188:109729. https://doi.org/10.1016/j.envres.2020.109729 Wang WG, Yan Y, Zhao YH, Shi Q, Wang YY (2020b) Characterization of stratified EPS and their role in the initial adhesion of anammox consortia. Water Res 169:115223. https://doi.org/10.1016/j.watres.2019.115223 Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H (2012) Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res 46:1027–1037. https://doi.org/10.1016/j.watres.2011.11.080 Yan X, Zheng J, Han Y, Liu JW, Sun JH (2017) Effect of influent C/N ratio on N2O emissions from anaerobic/anoxic/oxic biological nitrogen removal processes. Environ Sci Pollut Res 24:23714–23724. https://doi.org/10.1007/s11356-017-0019-x Yan X, Zheng SK, Huo ZM, Shi BW, Huang JJ, Yang J, Ma JH, Han YP, Wang Y, Cheng K, Feng JL, Sun JH (2020a) Effects of exogenous N-acyl-homoserine lactones on nutrient removal, sludge properties and microbial community structures during activated sludge process. Chemosphere 255:126945. https://doi.org/10.1016/j.chemosphere.2020.126945 Yan X, Zheng SK, Yang J, Ma JH, Han YP, Feng JL, Su XF (2020b) Effects of hydrodynamic shear stress on sludge properties, N2O generation, and microbial community structure during activated sludge process. J Environ Manag 274:111215. https://doi.org/10.1016/j.jenvman.2020.111215 Yan X, Zheng SK, Qiu DG, Yang J, Han YP, Huo ZM, Su XF (2019) Characteristics of N2O generation within the internal micro-environment of activated sludge flocs under different dissolved oxygen concentrations. Bioresour Technol 291:121867. https://doi.org/10.1016/j.biortech.2019.121867 Yang SF, Li XY (2009) Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions. Process Biochem 44:91–96. https://doi.org/10.1016/j.procbio.2008.09.010 Yang Q, Sun J, Wang DG, Wang S, Chen F, Yao FB, An HX, Zhong Y, Xie T, Wang YL, Li XM, Zeng GM (2017) Effect of nickel on the flocculability, settleability, and dewaterability of activated sludge. Bioresour Technol 224:188–196. https://doi.org/10.1016/j.biortech.2016.11.018 Ye FX, Peng G, Li Y (2011) Influences of influent carbon source on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge. Chemosphere 84:1250–1255. https://doi.org/10.1016/j.chemosphere.2011.05.004 Zhang ZJ, Chen SH, Wang SM, Luo HY (2011) Characterization of extracellular polymeric substances from biofilm in the process of starting-up a partial nitrification process under salt stress. Appl Microbiol Biotechnol 89:1563–1571. https://doi.org/10.1007/s00253-010-2947-y Zhang P, Fang F, Chen YP, Shen Y, Zhang W, Yang JX, Li C, Guo JS, Liu SY, Huang Y, Li S, Gao X, Yan P (2014) Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation. Chemosphere 117:59–65. https://doi.org/10.1016/j.chemosphere.2014.05.070 Zhao L, She Z, Jin C, Yang SY, Guo L, Zhao YG, Gao MC (2016) Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress. Bioprocess Biosyst Eng 39:1375–1389. https://doi.org/10.1007/s00449-016-1613-x Zhou L, Li H, Zhang Y, Wang Y, Han S, Xu H (2012) Abundance and diversity of Sphingomonas in Shenfu petroleum-wastewater irrigation zone, China. Environ Sci Pollut Res 19:282–294. https://doi.org/10.1007/s11356-011-0552-y Zhu XY, Chen YG (2011) Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid. Environ Sci Technol 45:2137–2143. https://doi.org/10.1021/es102900h