Effect of carbon nanotube lengths on the mechanical properties of epoxy resin: An experimental study

SAGE Publications - Tập 47 Số 19 - Trang 2321-2330 - 2013
Fawad Inam1, Thuc P. Vo1, Jonathan Jones2, Xu Lee3
1Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndŵr University, UK
2Department of Materials Science and Metallurgy, University of Cambridge, UK
3School of Mechanical and Production Engineering, Nanyang Technological University, Singapore

Tóm tắt

Batches of multi-walled carbon nanotubes having an average length of 2091 nm were aggressively tip-ultrasonicated to produce shortened carbon nanotubes having average lengths of 1689 nm, 1332 nm, 992 nm and 503 nm. Raman spectroscopic analysis confirmed that the shortened carbon nanotubes retained their crystallinity after the shortening process. Carbon nanotubes were then dispersed in the epoxy matrix using high-shear mixing technique (calendering). The mechanical properties were measured for the cured epoxy–0.1 wt% carbon nanotube nanocomposites having carbon nanotubes of different lengths. It was found that the nanocomposites containing long carbon nanotubes (2091 nm and 1689 nm) possess higher tensile strength, elastic modulus, fracture strain and fracture toughness as compared to nanocomposites containing short carbon nanotubes (1332 nm, 992 nm and 503 nm).

Từ khóa


Tài liệu tham khảo

10.1016/j.compscitech.2005.12.015

10.1007/s003390050999

10.1126/science.265.5176.1212

10.1016/j.compscitech.2004.04.002

Hollertz R, Chatterjee S, Gutmann H, et al. Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes. Nanotechnology 2011; 22: 125702.

10.1007/s10853-009-3551-3

10.1177/0021998311418139

10.1088/0022-3727/36/5/323

10.1177/0731684407085417

10.1016/j.polymer.2010.08.063

Yamaki J, J Phys D: Appl Phys

Kongkeaw P, 2011, J Microsc Soc Thailand, 4, 46

Khare R, 2005, J Mineral Mater Charact Eng, 4, 31

10.1016/j.compscitech.2005.04.021

10.1016/j.compscitech.2004.11.003

Mortensen A, 2007, Concise encyclopedia of composite materials, 2

10.1088/0508-3443/3/3/302

Holister GS, 1966, Fibre reinforced materials

Halpin JC, Tsai SW. Environmental factors in composite material design. US Air Force Materials Laboratory Report; AFMLTR 67-423, 1969.

10.1016/j.engfracmech.2006.05.015

10.1002/adfm.200305162

10.1002/polb.20510

10.1016/j.compositesa.2005.09.019

10.1016/j.polymer.2005.10.028

10.1088/0957-4484/18/7/075711

10.1007/s10853-011-5387-x

10.1016/j.compscitech.2009.12.010

10.1080/19475411003602732

10.1002/1521-3935(200211)203:15<2196::AID-MACP2196>3.0.CO;2-U

10.1021/ja01269a023

10.1016/0008-6223(96)89470-X

10.4028/www.scientific.net/MSF.505-507.1075

10.1002/jrs.1686

10.1016/j.scriptamat.2007.02.007

10.1016/j.ceramint.2006.09.011

10.1063/1.1674108

10.1039/b504282h

10.1016/j.carbon.2006.05.021

10.1016/S0022-3697(99)00376-5

10.1177/0095244305045927

10.1088/0022-3727/35/16/103

10.1081/DIS-120017941