Effect of carbon dioxide concentration on the combustion characteristics of boron agglomerates in oxygen-containing atmospheres

Zhejiang University Press - Tập 24 Số 11 - Trang 949-959 - 2023
Lian Duan1, Zhixun Xia1, Yunchao Feng1, Binbin Chen1, Jiarui Zhang1, Likun Ma1
1College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Burkholder TR, Andrews L, 1991. Reactions of boron atoms with molecular oxygen. Infrared spectra of BO, BO2, B2O2, B2O3, and $${\rm{BO}}_2^ - $$ in solid argon. The Journal of Chemical Physics, 95(12):8697–8709. https://doi.org/10.1063/L461814

Burkholder TR, Andrews L, Bartlett RJ, 1993. Reaction of boron atoms with carbon dioxide: matrix and ab initio calculated infrared spectra of OBCO. The Journal of Physical Chemistry, 97(14):3500–3503. https://doi.org/10.1021/j100116a010

Chen BB, Xia ZX, Huang LY, et al., 2018. Characteristics of the combustion chamber of a boron-based solid propellant ducted rocket with a chin-type inlet. Aerospace Science and Technology, 82–83:210–219. https://doi.org/10.1016/j.ast.2018.08.035

Chin CH, Mebel AM, Hwang DY, 2003. Theoretical study of the reaction mechanism of boron atom with carbon dioxide. Chemical Physics Letters, 375(5–6):670–675. https://doi.org/10.1016/S0009-2614(03)00964-3

DiGiuseppe TG, Davidovits P, 1981. Boron atom reactions. II. Rate constants with O2, SO2, CO2, and N2O. The Journal of Chemical Physics, 74(6):3287–3291. https://doi.org/10.1063/1.441534

Duan L, Xia ZX, Chen BB, et al., 2022. Ignition and combustion characteristics of boron agglomerates under different oxygen concentrations. Acta Astronautica, 197:81–90. https://doi.org/10.1016/j.actaastro.2022.05.020

Foelsche RO, Burton RL, Krier H, 1999. Boron particle ignition and combustion at 30–150 atm. Combustion and Flame, 117(1–2):32–58. https://doi.org/10.1016/S0010-2180(98)00080-7

Fry RS, 2004. A century of ramjet propulsion technology evolution. Journal of Propulsion and Power, 20(1):27–58. https://doi.org/10.2514/1.9178

Hashim SA, Islam M, Kangle SM, et al., 2021. Performance evaluation of boron/hydroxyl-terminated polybutadiene-based solid fuels containing activated charcoal. Journal of Spacecraft and Rockets, 58(2):363–374. https://doi.org/10.2514/1.A34820

Jain A, Anthonysamy S, 2015. Oxidation of boron carbide powder. Journal of Thermal Analysis and Calorimetry, 122(2):645–652. https://doi.org/10.1007/s10973-015-4818-3

King MK, 1973. Boron particle ignition in hot gas streams. Combustion Science and Technology, 8(5–6):255–273. https://doi.org/10.1080/00102207308946648

Krier H, Burton RL, Pirman SR, et al., 1996. Shock initiation of crystalline boron in oxygen and fluorine compounds. Journal of Propulsion and Power, 12(4):672–679. https://doi.org/10.2514/3.24088

Li HP, Ao W, Wang Y, et al., 2014. Effect of carbon dioxide on the reactivity of the oxidation of boron particles. Propellants, Explosives, Pyrotechnics, 39(4):617–623. https://doi.org/10.1002/prep.201300180

Li XP, Ge LH, Luan XT, 2007. Applications of gas generator in ramjet direct-connect test facility. Journal of Rocket Propulsion, 33(3):14–19 (in Chinese). https://doi.org/10.3969/j.jssn.1672-9374.2007.03.003

Li YQ, Qiu T, 2007. Oxidation behaviour of boron carbide powder. Materials Science and Engineering: A, 444(1–2): 184–191. https://doi.org/10.1016/j.msea.2006.08.068

Liang DL, Liu JZ, Zhou YN, et al., 2017. Ignition and combustion characteristics of molded amorphous boron under different oxygen pressures. Acta Astronautica, 138:118–128. https://doi.org/10.1016/j.actaastro.2017.05.019

Liu LL, He GQ, Wang YH, et al., 2015. Chemical analysis of primary combustion products of boron-based fuel-rich propellant. RSC Advances, 5(123):101416–101426. https://doi.org/10.1039/C5RA13693H

Liu LL, He GQ, Wang YH, et al., 2017. Factors affecting the primary combustion products of boron-based fuel-rich propellants. Journal of Propulsion and Power, 33(2):333–337. https://doi.org/10.2514/1.B36134

Lv Z, Xia ZX, Liu B, et al., 2017. Preliminary experimental study on solid-fuel rocket scramjet combustor. Journal of Zhejiang University-SCIENCE A (Applied Physics and Engineering), 18(2): 106–112. https://doi.org/10.1631/jzus.A1600489

Meerov D, Monogarov K, Bragin A, et al., 2015. Boron particles agglomeration and slag formation during combustion of energetic condensed systems. Physics Procedia, 72:85–88. https://doi.org/10.1016/j.phpro.2015.09.024

Mi XC, Goroshin S, Higgins AJ, et al., 2013. Dual-stage ignition of boron particle agglomerates. Combustion and Flame, 160(11):2608–2618. https://doi.org/10.1016/j.combustflame.2013.06.004

Millot F, Rifflet JC, Sarou-Kanian V, et al., 2002. High-temperature properties of liquid boron from contactless techniques. International Journal of Thermophysics, 23(5): 1185–1195. https://doi.org/10.1023/A:1019836102776

Roux JA, Choi J, Shakya N, 2014. Parametric scramjet cycle analysis for nonideal mass flow rate. Journal of Thermophysics and Heat Transfer, 28(1): 166–171. https://doi.org/10.2514/1.T4217

Smolanoff J, Sowa-Resat M, Łapicki A, et al., 1996. Kinetic parameters for heterogenous boron combustion reactions via the Cluster Beam approach. Combustion and Flame, 105(1–2):68–79. https://doi.org/10.1016/0010-2180(95)00155-7

Song QG, Cao W, Wei X, et al., 2021. Laser ignition and combustion characteristics of micro- and nano-sized boron under different atmospheres and pressures. Combustion and Flame, 230:111420. https://doi.org/10.1016/j.combustflame.202L111420

Sun YL, Ren H, Du FZ, et al., 2018. Preparation and characterization of sintered B/MgB2 as heat release material. Journal of Alloys and Compounds, 759:100–107. https://doi.org/10.1016/j.jallcom.2018.05.038

Sun YL, Ren H, Jiao QJ, et al., 2020. Oxidation, ignition and combustion behaviors of differently prepared boron-magnesium composites. Combustion and Flame, 221: 11–19. https://doi.org/10.1016/j.combustflame.2020.07.022

Ulas A, Kuo KK, Gotzmer C, 2001. Ignition and combustion of boron particles in fluorine-containing environments. Combustion and Flame, 127(1–2): 1935–1957. https://doi.org/10.1016/S0010-2180(01)00299-1

Yetter RA, Rabitz H, Dryer FL, et al., 1991. Kinetics of high-temperature B/O/H/C chemistry. Combustion and Flame, 83(1–2):43–62. https://doi.org/10.1016/0010-2180(91)90202-M

Yoshida T, Yuasa S, 2000. Effect of water vapor on ignition and combustion of boron lumps in an oxygen stream. Proceedings of the Combustion Institute, 28(2):2735–2741. https://doi.org/10.1016/S0082-0784(00)80694-3

Yuasa S, Isoda H, 1991. Ignition and combustion of small boron lumps in an oxygen stream. Combustion and Flame, 86(3): 216–222. https://doi.org/10.1016/0010-2180(91)90101-G

Zhang H, Wang NF, Wu ZW, 2020. Effect of fuel grain configuration on the thrust of a solid-fuel scramjet. Aerospace Science and Technology, 106:106145. https://doi.org/10.1016/j.ast.2020.106145

Zhou W, 1998. Numerical Study of Multi-Phase Combustion: Ignition and Combustion of an Isolated Boron Particle in Fluorinated Environments. PhD Thesis, Princeton University, Princeton, USA.

Zhou W, Yetter RA, Dryer FL, et al., 1998. Effect of fluorine on the combustion of “clean” surface boron particles. Combustion and Flame, 112(4):507–521. https://doi.org/10.1016/S0010-2180(97)00129-6

Zhou W, Yetter RA, Dryer FL, et al., 1999. Multi-phase model for ignition and combustion of boron particles. Combustion and Flame, 117(1–2):227–243. https://doi.org/10.1016/S0010-2180(98)00079-0