Effect of calcination temperature of magnesium silicate on the properties of magnesium phosphate cement
Tóm tắt
Từ khóa
Tài liệu tham khảo
Popovics, S., Rajendran, N., Penko, M.: Rapid hardening cements for repair of concrete. ACI Mater J. 84(1), 64–73 (1987)
Buj, I., Torras, J., Casellas, D., Rovira, M., de Pablo, J.: Effect of heavy metals and water content on the strength of magnesium phosphate cements. J Hazard Mater. 170(1), 345–350 (2009)
Yang, Q., Wu, X.: Factors influencing properties of phosphate cement-based binder for rapid repair of concrete1. Cem Concr Res. 29(3), 389–396 (1999)
Yang, N., Shi, C., Yang, J., Chang, Y.: Research progresses in magnesium phosphate cement–based materials. J Mater Civ Eng. 26(10), 04014071 (2014)
Swanson, G.: Magnesium Oxide, Magnesium Chloride, and Phosphate-based Cements. Building Based New Building Protocol (2010).
Kingery, W.D.: phosphate bonding in refratories. thesis Massachusetts Institute of Technology (1950)
Sugama, T., Kukacka, L.E.: Magnesium monophosphate cements derived from diammonium phosphate solutions. Cem Concr Res. 13(3), 407–416 (1983)
Ding, Z., Li, Z.: Effect of aggregates and water contents on the properties of magnesium phospho-silicate cement. Cem Concr Compos. 27(1), 11–18 (2005)
Yang, Q., Zhu, B., Zhang, S., Wu, X.: Properties and applications of magnesia–phosphate cement mortar for rapid repair of concrete. Cem Concr Res. 30(11), 1807–1813 (2000)
Wagh, A.S.: Chapter 9 - Magnesium Phosphate Ceramics. In: Chemically Bonded Phosphate Ceramics. pp. 97–111. Elsevier, Oxford (2004)
Shi, C., Yang, J., Yang, N., Chang, Y.: Effect of waterglass on water stability of potassium magnesium phosphate cement paste. Cem Concr Compos. 53, 83–87 (2014)
Soudée, E., Péra, J.: Mechanism of setting reaction in magnesia-phosphate cements. Cem Concr Res. 30(2), 315–321 (2000)
Soudée, E., Péra, J.: Influence of magnesia surface on the setting time of magnesia–phosphate cement. Cem Concr Res. 32(1), 153–157 (2002)
Chang, Y., Shi, C., Yang, N., Yang, J.: Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society. 41(4), 492–499 (2013)
Birchal, V.S.S., Rocha, S.D.F., Ciminelli, V.S.T.: The effect of magnesite calcination conditions on magnesia hydration. Miner Eng. 13(14), 1629–1633 (2000)
Rashid, I., Daraghmeh, N.H., Al Omari, M.M., Chowdhry, B.Z., Leharne, S.A., Hodali, H.A., Badwan, A.A.: Magnesium silicate. Profiles of drug substances, excipients, and related methodology. 36, 241–285 (2011)
C, S.: Lime silico-phosphate cement. U.S. patent NO 3804651 A.
Gao, X., Zhang, A., Li, S., Sun, B., Zhang, L.: The resistance to high temperature of magnesia phosphate cement paste containing wollastonite. Materials and Structures/Materiaux et Constructions. 49(8), 3423–3434 (2016)
Ngally Sabouang, C.J., Mbey, J.A., Liboum, Thomas, F., Njopwouo, D.: Talc as raw material for cementitious products formulation. Journal of Asian Ceramic Societies. 2(3), 263–267 (2014)
Ngally Sabouang, C.J., Mbey, J.A., Hatert, F., Njopwouo, D.: Talc-based cementitious products: effect of talc calcination. Journal of Asian Ceramic Societies. 3(3), 360–367 (2015)
Ciesielczyk, F., Bartczak, P., Klapiszewski, L., Paukszta, D., Piasecki, A., Jesionowski, T.: Influence of calcination parameters on physicochemical and structural properties of co-precipitated magnesium silicate. Physicochemical Problems of Mineral Processing. 50(1), 119–129 (2014)
Zhang, T., Vandeperre, L.J., Cheeseman, C.R.: Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem Concr Res. 65, 8–14 (2014)
Dietemann, M.: Étude de la précipitation du silicate de magnésium amorphe assistée par ultrasons synthèse, caractérisation et modélisation. l’Institut National Polytechnique de Toulouse (INP Toulouse) (2012)
Brew, D.R.M., Glasser, F.P.: Synthesis and characterisation of magnesium silicate hydrate gels. Cem Concr Res. 35(1), 85–98 (2005)
Yuan, P., Wu, D.Q., He, H.P., Lin, Z.Y.: The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study. Appl Surf Sci. 227(1–4), 30–39 (2004)
Oelkers, E.H., Schott, J.: An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution. Geochim Cosmochim Acta. 65(8), 1219–1231 (2001)
Villiéras, F.: Etude des modifications des propriétés du talc et de la chlorite par traitement thermique (Thèse nouveau doctorat). Institut national polytechnique de Lorraine (INPL) (1993)
Halla, D.A., Stevens, R., El-Jazairi, B.: The effect of retarders on the microstructure and mechanical properties of magnesia–phosphate cement mortar. Cem Concr Res. 31, 455–465 (2001)
Wang, A.J., Zhang, J., Li, J.M., Ma, A.B., Liu, L.T.: Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics. Mater Sci Eng C. 33(5), 2508–2512 (2013)
Chau, C.K., Qiao, F., Li, Z.: Microstructure of magnesium potassium phosphate cement. Constr Build Mater. 25(6), 2911–2917 (2011)
Le Rouzic, M., Chaussadent, T., Platret, G., Stefan, L.: Mechanisms of k-struvite formation in magnesium phosphate cements. Cem Concr Res. 91, 117–122 (2017)
Qiao, F.: Reaction mechanisms of magnesium potassium phosphate cement and its application. PhD thesis., (2010)
Delmi, M.M.Y., Aı¨t-Mokhtar, A., Amiri, O.: Modelling the coupled evolution of hydration and porosity of cement-based materials. Constr Build Mater. 20(7), 504–514 (2006)
Amiri, O., Ait-Mokhtar, A., Dumargue, P., Touchard, G.: Electrochemical modelling of chlorides migration in cement based materials. Part II: experimental study - calculation of chlorides flux. Electrochim Acta. 46(23), 3589–3597 (2001)