Effect of cage design, supplemental posterior instrumentation and approach on primary stability of a lumbar interbody fusion – A biomechanical in vitro study
Tài liệu tham khảo
Abumi, 1990, Biomechanical evaluation of lumbar spinal stability after graded facetectomies, Spine (Phila Pa 1976), 15, 1142, 10.1097/00007632-199011010-00011
Adams, 2006, What is intervertebral disc degeneration, and what causes it?, Spine (Phila Pa 1976), 31, 2151, 10.1097/01.brs.0000231761.73859.2c
Ambati, 2014, Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study, Spine J., 1
Battie, 2004, Lumbar disc degeneration: epidemiology and genetic influences, Spine (Phila Pa 1976), 29, 2679, 10.1097/01.brs.0000146457.83240.eb
Cole, 2009, Comparison of low back fusion techniques: transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches, Curr. Rev. Muscoskelet. Med., 2, 118, 10.1007/s12178-009-9053-8
Ding, 2014, Comparison of unilateral versus bilateral pedicle screw fixation in lumbar interbody fusion: a meta-analysis, Eur. Spine J., 23, 395, 10.1007/s00586-013-3100-2
Duncan, 2013, An analysis of fusion cage migration in unilateral and bilateral fixation with transforaminal lumbar interbody fusion, Eur. Spine J., 22, 439, 10.1007/s00586-012-2458-x
Fleege, 2015, PLIF- und TLIF-verfahren, Orthopade, 1
Harris, 2004, Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine, Spine (Phila Pa 1976), 29, E65, 10.1097/01.BRS.0000113034.74567.86
Kettler, 2005, In vitro stabilizing effect of a transforaminal compared with two posterior lumbar interbody fusion cages, Spine (Phila Pa 1976), 30, E665, 10.1097/01.brs.0000186466.01542.8c
Kotil, 2013, Clinical and radiologic outcomes of TLIF applications with or without pedicle screw: a double center prospective pilot comparative study, J. Spinal Disord. Tech., 26, 359, 10.1097/BSD.0b013e318249599f
Lund, 1998, Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density, J. Bone Joint Surg. (Br.), 80, 351, 10.1302/0301-620X.80B2.7693
Oxland, 2000, Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review, Eur. Spine J., 9, S95, 10.1007/PL00010028
Recoules-Arche, 2014, Unilateral extra-foraminal lumbar interbody fusion (ELIF): surgical technique and clinical outcome in 107 patients, J. Spinal Disord. Tech., 10.1097/BSD.0000000000000125
Roughley, 2006, The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage, Eur. Cell. Mater., 11, 1, 10.22203/eCM.v011a01
Schmoelz, 2015, Intervertebrale cages aus biomechanischer Sicht, Orthopade, 1
Urban, 2004, Nutrition of the intervertebral disc, Spine (Phila Pa 1976), 29, 2700, 10.1097/01.brs.0000146499.97948.52
Wang, 2005, Posterior instrumentation reduces differences in spine stability as a result of different cage orientations: an in vitro study, Spine (Phila Pa 1976), 30, 62, 10.1097/01.brs.0000150123.26869.48
Wang, 2014, Unilateral versus bilateral pedicle screw fixation of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF): a meta-analysis of randomized controlled trials, BMC Surg., 14, 87, 10.1186/1471-2482-14-87
Wilke, 1998, Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants, Eur. Spine J., 7, 148, 10.1007/s005860050045
Yuan, 2014, Unilateral versus bilateral pedicle screw fixation in lumbar interbody fusion: a meta-analysis of complication and fusion rate, Clin. Neurol. Neurosurg., 117, 28, 10.1016/j.clineuro.2013.11.016