Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kim, 1994, Ordered intermetallic alloys, part III: gamma titanium aluminides, JOM, 46, 30, 10.1007/BF03220745
Y.-W. Kim, D.M., Dimiduk, M.H. Loretto, Gamma Titanium Aluminides 1999, The Minerals Metals & Materials society (TMS), Warrendale, PA, (1999).
Appel, 2011
Wu, 2006, Review of alloy and process development of TiAl alloys, Intermetallics, 14, 1114, 10.1016/j.intermet.2005.10.019
Yamaguchi, 2000, High-temperature structural intermetallics, Acta Mater., 48, 307, 10.1016/S1359-6454(99)00301-8
Murr, 2015, Metallurgy of additive manufacturing: examples from electron beam melting, Add. Manu., 5, 40
Murr, 2012, Fabrication of metal and alloy components by additive manufacturing: example of 3D materials science, J. Mater. Res. Technol., 1, 42, 10.1016/S2238-7854(12)70009-1
Cormier, 2007, Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders, Res. Lett. Mater. Sci., 10.1155/2007/34737
Murr, 2010, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Mater., 58, 1887, 10.1016/j.actamat.2009.11.032
Schwerdtfeger, 2014, Selective electron beam melting of Ti-48Al-2Nb-2Cr: microstructure and aluminium loss, Intermetallics, 49, 29, 10.1016/j.intermet.2014.01.004
Biamino, 2011, Electron beam melting of Ti-48Al-2Cr-2Nb Alloy: microstructure and mechanical properties investigation, Intermetallics, 19, 776, 10.1016/j.intermet.2010.11.017
Hernandez, 2012, Microstructures for two-phase gamma titanium aluminide fabricated by electron beam melting, Metallogr. Microstruct. Anal., 1, 14, 10.1007/s13632-011-0001-9
Tang, 2015, Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting, Mater. Sci. Eng. A, 636, 103, 10.1016/j.msea.2015.03.079
Li, 2016, Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting, Mater. Charact., 113, 125, 10.1016/j.matchar.2016.01.012
L. Loeber, S. Biamino, U. Ackelid, S. Sabbadini, P. Epicoco, P. Fino, J. Eckert, (2011). Comparison of selective laser and electron beam melted titanium aluminides, International Symposium, 22nd Solid Freeform Fabrication 547–556.
Srivastava, 2001, The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples, Intermetallics, 9, 1003, 10.1016/S0966-9795(01)00063-2
Antonysamy, 2013, Effect of build geometry on the (-grain structure and texture in additive manufacture of Ti-6Al-4 V by selective electron beam melting, Mater. Charact., 84, 153, 10.1016/j.matchar.2013.07.012
Tan, 2015, Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting, Acta Mater., 97, 1, 10.1016/j.actamat.2015.06.036
Jamshidinia, 2015, Microstructural modification of Ti-6Al-4V by using an in-situ printed heat sink in electron beam melting® (EBM), J. Mater. Proc. Technol., 226, 264, 10.1016/j.jmatprotec.2015.07.006
Yadroitsev, 2013, Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder, J. Mater. Proc. Technol., 213, 606, 10.1016/j.jmatprotec.2012.11.014
Kunze, 2015, Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM), Mater. Sci. Eng. A, 620, 213, 10.1016/j.msea.2014.10.003
Sun, 2015, Phase and grain size inhomogeneity and their influences on creep behavior of Co-Cr-Mo alloy additive manufactured by electron beam melting, Acta Mater., 86, 305, 10.1016/j.actamat.2014.11.012
Haanapplel, 2002, The high temperature oxidation behavior of high and low alloyed TiAl-based intermetallics, Intermetallics, 10, 293, 10.1016/S0966-9795(01)00137-6
Loria, 2000, Gamma titanium aluminides as prospective structural materials, Intermetallics, 8, 1339, 10.1016/S0966-9795(00)00073-X
Lamirand, 2006, Effects of interstitial oxygen on microstructure and mechanical properties of Ti-48Al-2Cr-2Nb with fully lamellar and duplex microstructures, Metall. Mater. Trans. A, 37, 2369, 10.1007/BF02586211
Wang, 2005, Grain refinement of a Ti-47Al-8Nb-2Cr alloy through heat treatments, Scr. Mater., 52, 329, 10.1016/j.scriptamat.2004.10.004
Clemens, 2006, Grain refinement in γ-TiAl-based alloys by solid state phase transformations, Intermetallics, 14, 1380, 10.1016/j.intermet.2005.11.015
Parthasarathy, 1998, Flow behavior of PST and fully lamellar polycrystals of Ti-48Al in the microstrain regime, Acta Mater., 46, 4005, 10.1016/S1359-6454(98)00067-6
Kim, 2003, Stability of lamellar microstructure of hard orientated PST crystal of TiAl Alloy, Acta Mater., 51, 2191, 10.1016/S1359-6454(03)00012-0
Nakano, 1996, Effect of chemical ordering on the deformation made of Al-rich Ti-Al single crystals, Philos. Mag. A, 74, 251, 10.1080/01418619608239700
Terner, 2012, Electron beam melting of high niobium containing TiAl alloy: feasibility investigation, Steel Res. Int., 83, 943, 10.1002/srin.201100282
Dimiduk, 1991, Recent progress on intermetallic alloys for advanced aerospace systems, ISIJ Int., 31, 1223, 10.2355/isijinternational.31.1223
Denquin, 1996, Phase transformation mechanisms involved in two-phase TiAl-based alloys-II. Discontinuous coarsening and massive-type transformation, Acta Mater., 44, 353, 10.1016/1359-6454(95)00168-6
Yang, 2003, Refining grain size of a TiAl alloy by cyclic heat treatment through discontinuous coarsening, Intermetallics, 11, 971, 10.1016/S0966-9795(02)00126-7
Umakoshi, 1992, Plastic behaviour of TiAl crystals containing a single set of lamellae at high temperatures, ISIJ Int., 32, 1339, 10.2355/isijinternational.32.1339
Kawabata, 1985, Positive temperature dependence of the yield stress in TiAl L10 type superrattice intermetallic compound single crystals at 293–1273K, Acta. Metall., 33, 1355, 10.1016/0001-6160(85)90245-7
Inui, 1997, Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti-56at.%Al), Philos. Mag. A, 75, 395, 10.1080/01418619708205149