Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting

Additive Manufacturing - Tập 13 - Trang 61-70 - 2017
Mitsuharu Todai1, Takayoshi Nakano1, Tianqi Liu1, Hiroyuki Yasuda1, Koji Hagihara2, Ken Cho1, Minoru Ueda3, Masao Takeyama4
1Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
2Department of Adaptive Machine systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
3Metal Technology Co. Ltd., Harmony Tower 27F, 1-32-2 Honcho, Nakano-Ku, Tokyo, 164-8721, Japan
4Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kim, 1994, Ordered intermetallic alloys, part III: gamma titanium aluminides, JOM, 46, 30, 10.1007/BF03220745

Y.-W. Kim, D.M., Dimiduk, M.H. Loretto, Gamma Titanium Aluminides 1999, The Minerals Metals & Materials society (TMS), Warrendale, PA, (1999).

Appel, 2011

Wu, 2006, Review of alloy and process development of TiAl alloys, Intermetallics, 14, 1114, 10.1016/j.intermet.2005.10.019

Yamaguchi, 2000, High-temperature structural intermetallics, Acta Mater., 48, 307, 10.1016/S1359-6454(99)00301-8

Murr, 2015, Metallurgy of additive manufacturing: examples from electron beam melting, Add. Manu., 5, 40

Murr, 2012, Fabrication of metal and alloy components by additive manufacturing: example of 3D materials science, J. Mater. Res. Technol., 1, 42, 10.1016/S2238-7854(12)70009-1

Cormier, 2007, Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders, Res. Lett. Mater. Sci., 10.1155/2007/34737

Murr, 2010, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Mater., 58, 1887, 10.1016/j.actamat.2009.11.032

Schwerdtfeger, 2014, Selective electron beam melting of Ti-48Al-2Nb-2Cr: microstructure and aluminium loss, Intermetallics, 49, 29, 10.1016/j.intermet.2014.01.004

Biamino, 2011, Electron beam melting of Ti-48Al-2Cr-2Nb Alloy: microstructure and mechanical properties investigation, Intermetallics, 19, 776, 10.1016/j.intermet.2010.11.017

Hernandez, 2012, Microstructures for two-phase gamma titanium aluminide fabricated by electron beam melting, Metallogr. Microstruct. Anal., 1, 14, 10.1007/s13632-011-0001-9

Tang, 2015, Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting, Mater. Sci. Eng. A, 636, 103, 10.1016/j.msea.2015.03.079

Li, 2016, Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting, Mater. Charact., 113, 125, 10.1016/j.matchar.2016.01.012

L. Loeber, S. Biamino, U. Ackelid, S. Sabbadini, P. Epicoco, P. Fino, J. Eckert, (2011). Comparison of selective laser and electron beam melted titanium aluminides, International Symposium, 22nd Solid Freeform Fabrication 547–556.

Srivastava, 2001, The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples, Intermetallics, 9, 1003, 10.1016/S0966-9795(01)00063-2

Antonysamy, 2013, Effect of build geometry on the (-grain structure and texture in additive manufacture of Ti-6Al-4 V by selective electron beam melting, Mater. Charact., 84, 153, 10.1016/j.matchar.2013.07.012

Tan, 2015, Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting, Acta Mater., 97, 1, 10.1016/j.actamat.2015.06.036

Jamshidinia, 2015, Microstructural modification of Ti-6Al-4V by using an in-situ printed heat sink in electron beam melting® (EBM), J. Mater. Proc. Technol., 226, 264, 10.1016/j.jmatprotec.2015.07.006

Yadroitsev, 2013, Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder, J. Mater. Proc. Technol., 213, 606, 10.1016/j.jmatprotec.2012.11.014

Kunze, 2015, Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM), Mater. Sci. Eng. A, 620, 213, 10.1016/j.msea.2014.10.003

Sun, 2015, Phase and grain size inhomogeneity and their influences on creep behavior of Co-Cr-Mo alloy additive manufactured by electron beam melting, Acta Mater., 86, 305, 10.1016/j.actamat.2014.11.012

Haanapplel, 2002, The high temperature oxidation behavior of high and low alloyed TiAl-based intermetallics, Intermetallics, 10, 293, 10.1016/S0966-9795(01)00137-6

Loria, 2000, Gamma titanium aluminides as prospective structural materials, Intermetallics, 8, 1339, 10.1016/S0966-9795(00)00073-X

Lamirand, 2006, Effects of interstitial oxygen on microstructure and mechanical properties of Ti-48Al-2Cr-2Nb with fully lamellar and duplex microstructures, Metall. Mater. Trans. A, 37, 2369, 10.1007/BF02586211

Wang, 2005, Grain refinement of a Ti-47Al-8Nb-2Cr alloy through heat treatments, Scr. Mater., 52, 329, 10.1016/j.scriptamat.2004.10.004

Clemens, 2006, Grain refinement in γ-TiAl-based alloys by solid state phase transformations, Intermetallics, 14, 1380, 10.1016/j.intermet.2005.11.015

Parthasarathy, 1998, Flow behavior of PST and fully lamellar polycrystals of Ti-48Al in the microstrain regime, Acta Mater., 46, 4005, 10.1016/S1359-6454(98)00067-6

Kim, 2003, Stability of lamellar microstructure of hard orientated PST crystal of TiAl Alloy, Acta Mater., 51, 2191, 10.1016/S1359-6454(03)00012-0

Nakano, 1996, Effect of chemical ordering on the deformation made of Al-rich Ti-Al single crystals, Philos. Mag. A, 74, 251, 10.1080/01418619608239700

Terner, 2012, Electron beam melting of high niobium containing TiAl alloy: feasibility investigation, Steel Res. Int., 83, 943, 10.1002/srin.201100282

Dimiduk, 1991, Recent progress on intermetallic alloys for advanced aerospace systems, ISIJ Int., 31, 1223, 10.2355/isijinternational.31.1223

Denquin, 1996, Phase transformation mechanisms involved in two-phase TiAl-based alloys-II. Discontinuous coarsening and massive-type transformation, Acta Mater., 44, 353, 10.1016/1359-6454(95)00168-6

Yang, 2003, Refining grain size of a TiAl alloy by cyclic heat treatment through discontinuous coarsening, Intermetallics, 11, 971, 10.1016/S0966-9795(02)00126-7

Umakoshi, 1992, Plastic behaviour of TiAl crystals containing a single set of lamellae at high temperatures, ISIJ Int., 32, 1339, 10.2355/isijinternational.32.1339

Kawabata, 1985, Positive temperature dependence of the yield stress in TiAl L10 type superrattice intermetallic compound single crystals at 293–1273K, Acta. Metall., 33, 1355, 10.1016/0001-6160(85)90245-7

Inui, 1997, Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti-56at.%Al), Philos. Mag. A, 75, 395, 10.1080/01418619708205149

Nakano, 1998, Stress anomaly in Al-rich TiAl single crystals deformed by the motion of 1/2<110] ordinary dislocations, Philos. Mag. Lett., 78, 385, 10.1080/095008398177788