Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting

Materials Characterization - Tập 84 - Trang 153-168 - 2013
A.A. Antonysamy1, J. Meyer2, P.B. Prangnell3
1Additive Manufacturing Centre, GKN Aerospace, P.O. Box 500, Golf Course Lane, Filton, BS34 9AU, UK
2EADS Innovation Works, 20A1 Building, Golf Course Lane, Filton, Bristol, BS997AR, UK
3School of Materials, University of Manchester, Manchester M13 9PL, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gibson, 2010

Kobryn, 2006, 3.01

Heinl, 2008, Cellular Ti6Al4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomater, 4, 1536, 10.1016/j.actbio.2008.03.013

Dinda, 2008, Fabrication of Ti6Al4V scaffolds by direct metal deposition, Metall Mater Trans A, 39A, 2914, 10.1007/s11661-008-9634-y

Wang, 2006, Microstructure study of direct laser fabricated Ti alloys using powder and wire, Appl Surf Sci, 253, 1424, 10.1016/j.apsusc.2006.02.028

Ezugwu, 1997, Titanium alloys and their machinability — a review, J Mater Process Technol, 68, 262, 10.1016/S0924-0136(96)00030-1

Wu, 2004, Microstructures of laser-deposited Ti6Al4V, Mater Des, 25, 137, 10.1016/j.matdes.2003.09.009

Gong, 2012, Int. review on powder-based electron beam additive manufacturing technology, 1

Martina, 2012, Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti6Al4V, J Mater Proc Technol, 212, 1377, 10.1016/j.jmatprotec.2012.02.002

Clark, 2012, Microstructural characterization of a prototype titanium alloy structure processed via direct laser deposition, Metall Mater Trans B, 43B, 388, 10.1007/s11663-011-9599-x

Kelly, 2004, Microstructural evolution in laser-deposited multilayer Ti6Al4V builds: Part I. Microstructural characterization, Metall Mater Trans A, 35A, 1861, 10.1007/s11661-004-0094-8

Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti6Al4V, Acta Mater, 58, 3303, 10.1016/j.actamat.2010.02.004

Wu, 2004, Microstructure and properties of a laser fabricated burn-resistant Ti alloy, Mater Des, 25, 103, 10.1016/j.matdes.2003.10.004

Brandl, 2012, Morphology, microstructure, and hardness of titanium (Ti6Al4V) blocks deposited by wire-feed additive layer manufacturing (ALM), Mater Sci Eng A, 532A, 295, 10.1016/j.msea.2011.10.095

Kobryn, 2003, Microstructure and texture evolution during solidification processing of Ti6Al4V, J Mater Proc Technol, 135, 330, 10.1016/S0924-0136(02)00865-8

Antonysamy, 2012, Effect of wall thickness transitions on texture and grain structure in additive layer manufacture (ALM) of Ti6Al4V, Mater Sci Forum, 706–709, 205, 10.4028/www.scientific.net/MSF.706-709.205

Al-Bermani, 2010, The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti6Al4V, Metall Mater Trans A, 41A, 3422, 10.1007/s11661-010-0397-x

Bermingham, 2008, Grain-refinement mechanisms in titanium alloys, J Mater Res, 23, 97, 10.1557/JMR.2008.0002

Bontha, 2006, Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures, J Mater Process Technol, 178, 135, 10.1016/j.jmatprotec.2006.03.155

Gong, 1997, 221

Moat, 2009, Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy, Acta Mater, 57, 220, 10.1016/j.actamat.2008.11.004

Murr, 2009, Microstructure and mechanical behavior of Ti6Al4V produced by rapid-layer manufacturing, for biomedical applications, J Mech Behav Biomed Mater, 2, 20, 10.1016/j.jmbbm.2008.05.004

Kelly, 2004, Microstructural evolution in laser-deposited multilayer Ti–6Al–4V builds: Part II. Thermal modelling, Metall Mater Trans A, 35A, 1869, 10.1007/s11661-004-0095-7

Facchini, 2009, Microstructure and mechanical properties of Ti6Al4V produced by electron beam melting of pre-alloyed powders, Rapid Prototyp J, 15, 171, 10.1108/13552540910960262

Luetjering, 2007

Bantounas, 2010, The role of microtexture on the faceted fracture morphology in Ti6Al4V subjected to high-cycle fatigue, Acta Mater, 58, 3908, 10.1016/j.actamat.2010.03.036

Al-Bermani, 2011

Davies, 2011, Development of microstructure and crystallographic texture during stationary shoulder friction stir welding of Ti6Al4V, Metall Mater Trans A, 42A, 2278, 10.1007/s11661-011-0606-2

Humbert, 2002, The calculation of a parent grain orientation from inherited variants for approximate (b.c.c.-h.c.p.) orientation relations, J Appl Crystallogr, 35, 401, 10.1107/S0021889802005824

Gey, 2003, Specific analysis of EBSD data to study the texture inheritance due to the β→α phase transformation, J Mater Sci, 38, 1289, 10.1023/A:1022842712172

Vanginneken, 1952, The habit plane of the zirconium transformation, Acta Crystallogr, 5, 548, 10.1107/S0365110X52001520

Stanford, 2004, Crystallographic variant selection in Ti6Al4V, Acta Mater, 52, 5215, 10.1016/j.actamat.2004.07.034

David, 1989, Correlation between solidification parameters and weld microstructures, Int Mater Rev, 34, 213, 10.1179/imr.1989.34.1.213

Yu, 1993, Investment casting of NiAl single-crystal alloys, JOM, 45, 49, 10.1007/BF03223220

Zäh, 2010, Modelling and simulation of electron beam melting, Prod Eng, 4, 15, 10.1007/s11740-009-0197-6

Mackwood, 2005, Thermal modelling of laser welding and related processes, Opt Laser Technol, 37, 99, 10.1016/j.optlastec.2004.02.017

Antonysamy, 2012

Ahmed, 1998, Phase transformations during cooling in α+β titanium alloys, Mater Sci Eng A, 243A, 206, 10.1016/S0921-5093(97)00802-2

Obasi, 2012, Quinta da Fonseca J, Preuss M. Effect of β grain growth on variant selection and texture memory effect during α→β→α phase transformation in Ti6 Al4V, Acta Mater, 60, 1048, 10.1016/j.actamat.2011.10.038

Sargent, 2012, Variant selection during cooling after beta annealing of Ti6Al4V ingot material, Metall Mater Trans A, 43A, 3570, 10.1007/s11661-012-1245-y

Humbert, 2006, Study of the variant selection in sharp textured regions of bimodal IMI 834 billet, Mater Sci Eng A, 430A, 157, 10.1016/j.msea.2006.05.047

Moustahfid, 1997, Study of the β-α phase transformations of a Ti-64 sheet induced from a high-temperature β state and a high-temperature α+β state, Metall Mater Trans A, 28A, 51, 10.1007/s11661-997-0082-x