Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gibson, 2010
Kobryn, 2006, 3.01
Heinl, 2008, Cellular Ti6Al4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomater, 4, 1536, 10.1016/j.actbio.2008.03.013
Dinda, 2008, Fabrication of Ti6Al4V scaffolds by direct metal deposition, Metall Mater Trans A, 39A, 2914, 10.1007/s11661-008-9634-y
Wang, 2006, Microstructure study of direct laser fabricated Ti alloys using powder and wire, Appl Surf Sci, 253, 1424, 10.1016/j.apsusc.2006.02.028
Ezugwu, 1997, Titanium alloys and their machinability — a review, J Mater Process Technol, 68, 262, 10.1016/S0924-0136(96)00030-1
Wu, 2004, Microstructures of laser-deposited Ti6Al4V, Mater Des, 25, 137, 10.1016/j.matdes.2003.09.009
Gong, 2012, Int. review on powder-based electron beam additive manufacturing technology, 1
Martina, 2012, Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti6Al4V, J Mater Proc Technol, 212, 1377, 10.1016/j.jmatprotec.2012.02.002
Clark, 2012, Microstructural characterization of a prototype titanium alloy structure processed via direct laser deposition, Metall Mater Trans B, 43B, 388, 10.1007/s11663-011-9599-x
Kelly, 2004, Microstructural evolution in laser-deposited multilayer Ti6Al4V builds: Part I. Microstructural characterization, Metall Mater Trans A, 35A, 1861, 10.1007/s11661-004-0094-8
Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti6Al4V, Acta Mater, 58, 3303, 10.1016/j.actamat.2010.02.004
Wu, 2004, Microstructure and properties of a laser fabricated burn-resistant Ti alloy, Mater Des, 25, 103, 10.1016/j.matdes.2003.10.004
Brandl, 2012, Morphology, microstructure, and hardness of titanium (Ti6Al4V) blocks deposited by wire-feed additive layer manufacturing (ALM), Mater Sci Eng A, 532A, 295, 10.1016/j.msea.2011.10.095
Kobryn, 2003, Microstructure and texture evolution during solidification processing of Ti6Al4V, J Mater Proc Technol, 135, 330, 10.1016/S0924-0136(02)00865-8
Antonysamy, 2012, Effect of wall thickness transitions on texture and grain structure in additive layer manufacture (ALM) of Ti6Al4V, Mater Sci Forum, 706–709, 205, 10.4028/www.scientific.net/MSF.706-709.205
Al-Bermani, 2010, The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti6Al4V, Metall Mater Trans A, 41A, 3422, 10.1007/s11661-010-0397-x
Bermingham, 2008, Grain-refinement mechanisms in titanium alloys, J Mater Res, 23, 97, 10.1557/JMR.2008.0002
Bontha, 2006, Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures, J Mater Process Technol, 178, 135, 10.1016/j.jmatprotec.2006.03.155
Gong, 1997, 221
Moat, 2009, Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy, Acta Mater, 57, 220, 10.1016/j.actamat.2008.11.004
Murr, 2009, Microstructure and mechanical behavior of Ti6Al4V produced by rapid-layer manufacturing, for biomedical applications, J Mech Behav Biomed Mater, 2, 20, 10.1016/j.jmbbm.2008.05.004
Kelly, 2004, Microstructural evolution in laser-deposited multilayer Ti–6Al–4V builds: Part II. Thermal modelling, Metall Mater Trans A, 35A, 1869, 10.1007/s11661-004-0095-7
Facchini, 2009, Microstructure and mechanical properties of Ti6Al4V produced by electron beam melting of pre-alloyed powders, Rapid Prototyp J, 15, 171, 10.1108/13552540910960262
Luetjering, 2007
Bantounas, 2010, The role of microtexture on the faceted fracture morphology in Ti6Al4V subjected to high-cycle fatigue, Acta Mater, 58, 3908, 10.1016/j.actamat.2010.03.036
Al-Bermani, 2011
Davies, 2011, Development of microstructure and crystallographic texture during stationary shoulder friction stir welding of Ti6Al4V, Metall Mater Trans A, 42A, 2278, 10.1007/s11661-011-0606-2
Humbert, 2002, The calculation of a parent grain orientation from inherited variants for approximate (b.c.c.-h.c.p.) orientation relations, J Appl Crystallogr, 35, 401, 10.1107/S0021889802005824
Gey, 2003, Specific analysis of EBSD data to study the texture inheritance due to the β→α phase transformation, J Mater Sci, 38, 1289, 10.1023/A:1022842712172
Vanginneken, 1952, The habit plane of the zirconium transformation, Acta Crystallogr, 5, 548, 10.1107/S0365110X52001520
Stanford, 2004, Crystallographic variant selection in Ti6Al4V, Acta Mater, 52, 5215, 10.1016/j.actamat.2004.07.034
David, 1989, Correlation between solidification parameters and weld microstructures, Int Mater Rev, 34, 213, 10.1179/imr.1989.34.1.213
Zäh, 2010, Modelling and simulation of electron beam melting, Prod Eng, 4, 15, 10.1007/s11740-009-0197-6
Mackwood, 2005, Thermal modelling of laser welding and related processes, Opt Laser Technol, 37, 99, 10.1016/j.optlastec.2004.02.017
Antonysamy, 2012
Ahmed, 1998, Phase transformations during cooling in α+β titanium alloys, Mater Sci Eng A, 243A, 206, 10.1016/S0921-5093(97)00802-2
Obasi, 2012, Quinta da Fonseca J, Preuss M. Effect of β grain growth on variant selection and texture memory effect during α→β→α phase transformation in Ti6 Al4V, Acta Mater, 60, 1048, 10.1016/j.actamat.2011.10.038
Sargent, 2012, Variant selection during cooling after beta annealing of Ti6Al4V ingot material, Metall Mater Trans A, 43A, 3570, 10.1007/s11661-012-1245-y
Humbert, 2006, Study of the variant selection in sharp textured regions of bimodal IMI 834 billet, Mater Sci Eng A, 430A, 157, 10.1016/j.msea.2006.05.047