Effect of alkylpyridinium chlorides on aggregation stability of aqueous dispersions of detonation nanodiamonds

Colloid Journal - Tập 79 - Trang 126-132 - 2017
O. A. Soboleva1, G. A. Khamenov1, V. Yu. Dolmatov2, V. G. Sergeyev1
1Department of Chemistry, Moscow State University, Moscow, Russia
2Special Design Bureau Tekhnolog, St. Petersburg, Russia

Tóm tắt

Adsorption of decyl-, dodecyl-, and hexadecylpyridinium chlorides (DePC, DoPC, and CPC, respectively) from aqueous solutions on the surface of detonation nanodiamonds (NDs) and its effect on the aggregation stability of ND hydrosols are studied. Hydrophobic interactions, which are enhanced with the length of hydrocarbon chains in surfactant molecules, are found to play the main role in surfactant adsorption on the ND surface. DePC is almost not adsorbed on NDs, and its addition has no effect on both the size and ζ potential of nanoparticles. Adsorption of DoPC decreases the ζ potential of ND particles, thus causing their coagulation. Superequivalent adsorption of CPC results in sign reversal of the ζ potential of ND particles, thereby leading to alternation of the zones of aggregation stability and coagulation of the hydrosols with a rise in the concentration of this surfactant.

Tài liệu tham khảo

Dolmatov, V.Yu., Usp. Khim., 2007, vol. 76, p. 375. Schrand, A.M., Ciftan Hens, S.A., and Shenderova, O.A., Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, p. 18. Osawa, E. and Ho, D., J. Med. Allied Sci., 2012, vol. 2, p. 31. Mochalin, V.N. and Gogotsi, Y., Diamond Relat. Mater., 2015, vol. 58, p. 161. Li, C.-C. and Huang, C.-L., Colloids Surf. A, 2010, vol. 353, p. 52. Xu, X., Yu, Z., Zhu, Y., and Wang, B., J. Solid State Chem., 2005, vol. 178, p. 688. Cha, I., Hashimoto, K., Fujiki, K., Yamauchi, T., and Tsubokawa, N., Mater. Chem. Phys., 2014, vol. 143, p. 1131. Kaur, R., Chitanda, J.M., Michel, D., Maley, J., Borondics, F., Yang, P., Verrall, R.E., and Badea, I., Int. J. Nanomed., 2012, vol. 7, p. Ð. 3851. Sawada, H., Kurachi, J., Takahashi, H., Ueno, K., and Hamazaki, K., Polym. Adv. Technol., 2005, vol. 16, p. 651. Yakovlev, R.Yu., Kulakova, I.I., Leonidov, N.B., and Lisichkin, G.V., Mendeleev Commun., 2012, vol. 22, p. 213. Mochalin, V.N. and Gogotsi, Yu., J. Am. Chem. Soc., 2009, vol. 131, p. 4594. Maitra, U., Gomathi, A., and Rao, C.N.R., J. Exp. Nanosci., 2008, vol. 3, p. 271. Zhang, X., Wang, S., Liu, M., Hui, J., Yang, B., Tao, L., and Wei, Y., Toxicol. Res., 2013, vol. 2, p. 335. Xu, X., Zhu, Y., Wang, B., Yu, Z., and Xie, S., J. Mater. Sci. Technol., 2005, vol. 21, p. 109. Xu, X., Yu, Z., Zhu, Y., and Wang, B., Diamond Relat. Mater., 2005, vol. 14, p. 206. Fuerstenau, D.W. and Jia, R., Colloids Surf. A, 2004, vol. 250, p. 223. Rupprecht, H. and Gu, T., Colloid Polym. Sci., 1991, vol. 269, p. 506. Paria, S. and Yuet, P.K., Ind. Eng. Chem. Res., 2006, vol. 45, p. 712. Atia, A.A., Farag, F.M., and Youssef, A.E.-F.M., Colloids Surf. A, 2006, vol. 278, p. 74. Goloub, T.P., Koopal, L.K., Bijsterbosch, B.H., and Sidorova, M.P., Langmuir, 1996, vol. 12, p. 3188. Klimenko, N.A., Yaroshenko, N.A., and Kondratova, T.B., Kolloidn. Zh., 1988, vol. 50, p. 261. Vanjara, A.K. and Dixit, S.G., J. Colloid Interface Sci., 1996, vol. 177, p. 359. Schmidlin, L., Pichot, V., Comet, M., Josset, S., Rabu, P., and Spitzer, D., Diamond Relat. Mater., 2012, vol. 22, p. 113. Pentin, V.Yu. and Kuramshina, G.M., Osnovy molekulyarnoi spektroskopii (Fundamentals of Molecular Spectroscopy), Moscow: Mir, Binom. Laboratoriya Znanii, 2008. Rosen, M.J. and Kunjappu, J.T., Surfactants and Interfacial Phenomena, New York: Wiley, 2012, p. 148. Sergeeva, I.P., Sobolev, V.D., Churaev, N.V., Jakobash, H.I., Weidenhammer, P., and Schmidt, F.I., Colloid J., 1998, vol. 60, p. 593. Ivanova, N.I., Colloid J., 2000, vol. 62, p. 56. Soboleva, O.A., Yaroslavtsev, A.A., Badun, G.A., and Summ, B.D., Colloid J., 2004, vol. 66, p. 470. Cui, Z.-G., Li, W., Qi, J.-J., and Wang, H.-J., Colloids Surf. A, 2012, vol. 414, p. 180.