Effect of alkyl ketene dimer on chemical and thermal properties of polylactic acid (PLA) hybrid composites

Sustainable Materials and Technologies - Tập 32 - Trang e00386 - 2022
Naile Angin1, Sena Caylak2, Murat Ertas1, Ayfer Donmez Cavdar3
1Department of Forest Industry Engineering, Faculty of Forestry, Bursa Technical University, 16310 Bursa, Turkey
2Department of Biocomposite Engineering, Graduate School of Natural and Applied Sciences, Bursa Technical University, 16310 Bursa, Turkey
3Department of Forest Industry Engineering, Faculty of Forestry, Karadeniz Technical University, 61080 Trabzon, Turkey

Tài liệu tham khảo

Demirbas, 2009, Political, economic and environmental impacts of biofuels: a review, Appl. Energy, 86, S108, 10.1016/j.apenergy.2009.04.036 Bilgen, 2014, Structure and environmental impact of global energy consumption, Renew. Sust. Energ. Rev., 38, 890, 10.1016/j.rser.2014.07.004 Cole, 1995, Light weight materials for automotive applications, Mater. Charact., 35, 3, 10.1016/1044-5803(95)00063-1 Koffler, 2010, On the calculation of fuel savings through lightweight design in automotive life cycle assessments, Int. J. Life Cycle Assess., 15, 128, 10.1007/s11367-009-0127-z Farag, 2008, Quantitative methods of materials substitution: application to automotive components, Mater. Des., 29, 374, 10.1016/j.matdes.2007.01.028 Isaac, 2020, Crashworthiness performance of green composite energy absorbing structure with embedded sensing device providing cleaner environment for sustainable maintenance, Sustain. Mater. Technol., 25 Tagliaferri, 2016, Life cycle assessment of future electric and hybrid vehicles: a cradle-to-grave systems engineering approach, Chem. Eng. Res. Des., 112, 298, 10.1016/j.cherd.2016.07.003 Ghosh, 2021, Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: front subframe case study, Sustain. Mater. Technol., 28 Mahato, 2018, Static and dynamic behavior of fibrous polymeric composite materials at different environmental conditions, J. Polym. Environ., 26, 1024, 10.1007/s10924-017-1001-x Witten, 2018, Market developments, trends, outlooks and challenges, Carbon Compos., 2018, 1 Çavdar, 2016, Doğal liflerin otomotiv sanayinde kullanımı, Kastamonu Üniversitesi Orman Fakültesi Derg, 16 dos Santos, 2008, Natural fibers plastic composites for automotive applications, 492 Ertas, 2019, Effects of halloysite nanotube on the performance of natural fiber filled poly (lactic acid) composites, Polym. Compos., 40, 4238, 10.1002/pc.25284 Sangeetha, 2018, State of the art and future prospectives of poly (lactic acid) based blends and composites, Polym. Compos., 39, 81, 10.1002/pc.23906 Mallet, 2014, Improvement of blown film extrusion of poly (lactic acid): structure processing properties relationships, Polym. Eng. Sci., 54, 840, 10.1002/pen.23610 Bhardwaj, 2007, Advances in the properties of polylactides based materials: a review, J. Biobased Mater. Bioenerg., 1, 191, 10.1166/jbmb.2007.023 Solarski, 2005, Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry, Polymer (Guildf), 46, 11187, 10.1016/j.polymer.2005.10.027 Laske, 2015, Enhancing the temperature stability of PLA by compounding strategies, Polym. Eng. Sci., 55, 2849, 10.1002/pen.24176 Dorgan, 2000, Thermal and rheological properties of commercial-grade poly (lactic acid) s, J. Polym. Environ., 8, 1, 10.1023/A:1010185910301 Yang, 2008, Thermal and mechanical properties of chemical crosslinked polylactide (PLA), Polym. Test., 27, 957, 10.1016/j.polymertesting.2008.08.009 Henton, 2005, Polylactic acid technology, Nat. Fibers, Biopolym. Biocompos., 16, 527 Mukherjee, 2011, PLA based biopolymer reinforced with natural fibre: a review, J. Polym. Environ., 19, 714, 10.1007/s10924-011-0320-6 Joshi, 2004, Are natural fiber composites environmentally superior to glass fiber reinforced composites?, Compos. Part A Appl. Sci. Manuf., 35, 371, 10.1016/j.compositesa.2003.09.016 Jang, 2021, Preparation of high-performance transparent glass-fiber reinforced composites based on refractive index-tunable epoxy-functionalized siloxane hybrid matrix, Compos. Sci. Technol., 201, 10.1016/j.compscitech.2020.108527 Leonard, 2009, Fracture behaviour of glass fibre-reinforced polyester composite, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 223, 83 Sathishkumar, 2014, Glass fiber-reinforced polymer composites–a review, J. Reinf. Plast. Compos., 33, 1258, 10.1177/0731684414530790 Al-Homoud, 2005, Performance characteristics and practical applications of common building thermal insulation materials, Build. Environ., 40, 353, 10.1016/j.buildenv.2004.05.013 Cao, 2015, Study of the thermal insulation properties of the glass fiber board used for interior building envelope, Energ. Build., 107, 49, 10.1016/j.enbuild.2015.08.007 Mazumdar, 2019, State of the industry report for glass fiber market, Compos. Manuf. Mag. Westman, 2010 Silva, 2020, Natural fibers as reinforcement additives for geopolymers–a review of potential eco-friendly applications to the construction industry, Sustain. Mater. Technol., 23 Pilla, 2009, Polylactide-recycled wood fiber composites, J. Appl. Polym. Sci., 111, 37, 10.1002/app.28860 Klyosov, 2007 Spoljaric, 2009, Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties, Compos. Part A Appl. Sci. Manuf., 40, 791, 10.1016/j.compositesa.2009.03.011 Wechsler, 2007, Some of the properties of wood–plastic composites, Build. Environ., 42, 2637, 10.1016/j.buildenv.2006.06.018 Gupta, 2007, Surface properties and adhesion of wood fiber reinforced thermoplastic composites, Colloids Surf. A Physicochem. Eng. Asp., 302, 388, 10.1016/j.colsurfa.2007.03.002 Miller, 2015, Integrating durability-based service-life predictions with environmental impact assessments of natural fiber–reinforced composite materials, Resour. Conserv. Recycl., 99, 72, 10.1016/j.resconrec.2015.04.004 George, 2001, A review on interface modification and characterization of natural fiber reinforced plastic composites, Polym. Eng. Sci., 41, 1471, 10.1002/pen.10846 Lindström, 2017, Maintenance therapy with second generation antipsychotics for bipolar disorder–a systematic review and meta-analysis, J. Affect. Disord., 213, 138, 10.1016/j.jad.2017.02.012 Hundhausen, 2009, Use of alkyl ketene dimer (AKD) for surface modification of particleboard chips, Eur. J. Wood Wood Prod., 67, 37, 10.1007/s00107-008-0275-z Çaylak, 2021, Mechanical characteristics and hydrophobicity of alkyl ketene dimer compatibilized hybrid biopolymer composites, Polym. Compos., 42, 2324, 10.1002/pc.25980 ASTM International, 2000 ASTM International, 2015 Angın, 2019, Studies on thermal and morphological properties of polyurethane foam filled polypropylene/poly (lactic acid) blends, J. Innov. Sci. Eng., 3, 47 Ndazi, 2011, Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures, Express Polym Lett, 5, 119, 10.3144/expresspolymlett.2011.13 Quero, 2012, Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate, Macromol. Chem. Phys., 213, 36, 10.1002/macp.201100437 ASTM International, 2018 ASTM International, 2017 Wang, 2008, Influence of carbon black on the properties of plasticized poly (lactic acid) composites, Polym. Degrad. Stab., 93, 1044, 10.1016/j.polymdegradstab.2008.03.023 Seo, 2008, Possibility of hydrogen bonding between AKD and cellulose molecules, J. Fac. Agric. Kyushu Univ., 53, 405, 10.5109/12849 Guo, 2019, Thermal properties of wood-plastic composites with different compositions, Materials (Basel), 12, 881, 10.3390/ma12060881 De Silva, 2016, Influence of the processing methods on the properties of poly (lactic acid)/halloysite nanocomposites, Polym. Compos., 37, 861, 10.1002/pc.23244 Saeidlou, 2012, Poly (lactic acid) crystallization, Prog. Polym. Sci., 37, 1657, 10.1016/j.progpolymsci.2012.07.005 Tang, 2014, Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite, RSC Adv., 4, 8985, 10.1039/c3ra44537b Gregorova, 2011, Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites, Polym. Eng. Sci., 51, 143, 10.1002/pen.21799 Ling, 2020, Wood plastic composites produced from postconsumer recycled polystyrene and coconut shell: effect of coupling agent and processing aid on tensile, thermal, and morphological properties, Polym. Eng. Sci., 60, 202, 10.1002/pen.25273 Jin, 2012 Wang, 2019, Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment, Int. J. Biol. Macromol., 129, 448, 10.1016/j.ijbiomac.2019.02.020 Karademir, 2002, Quantitative determination of alkyl ketene dimer (AKD) retention in paper made on a pilot paper machine, Turkish, J. Agric. For., 26, 253 Thunman, 2002, Thermal conductivity of wood—models for different stages of combustion, Biomass Bioenergy, 23, 47, 10.1016/S0961-9534(02)00031-4 Callister, 2008 Nielsen, 1994 Mihai, 2014, Novel polylactide/triticale straw biocomposites: processing, formulation, and properties, Polym. Eng. Sci., 54, 446, 10.1002/pen.23575 Takemori, 1979, Towards an understanding of the heat distortion temperature of thermoplastics, Polym. Eng. Sci., 19, 1104, 10.1002/pen.760191507 Luo, 2014, Mechanical and thermo-mechanical behaviors of sizing-treated corn fiber/polylactide composites, Polym. Test., 39, 45, 10.1016/j.polymertesting.2014.07.014 Gotro Qing-Xian, 2001, Theoretical expressions of thermal conductivity of wood, J. For. Res., 12, 43, 10.1007/BF02856799 Wang, 2010, Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation, Compos. Part B Eng., 41, 533, 10.1016/j.compositesb.2010.07.002 Feih, 2007, Tensile strength modeling of glass fiber—polymer composites in fire, J. Compos. Mater., 41, 2387, 10.1177/0021998307075461 Demirel, 2018, Effect of alkyl ketene dimer on the physical, mechanical, and biological durability of plywood, BioResources, 13, 147 Hansen, 1975, Heat conduction in metal-filled polymers: the role of particle size, shape, and orientation, Polym. Eng. Sci., 15, 353, 10.1002/pen.760150506