Effect of alkyl ketene dimer on chemical and thermal properties of polylactic acid (PLA) hybrid composites
Tài liệu tham khảo
Demirbas, 2009, Political, economic and environmental impacts of biofuels: a review, Appl. Energy, 86, S108, 10.1016/j.apenergy.2009.04.036
Bilgen, 2014, Structure and environmental impact of global energy consumption, Renew. Sust. Energ. Rev., 38, 890, 10.1016/j.rser.2014.07.004
Cole, 1995, Light weight materials for automotive applications, Mater. Charact., 35, 3, 10.1016/1044-5803(95)00063-1
Koffler, 2010, On the calculation of fuel savings through lightweight design in automotive life cycle assessments, Int. J. Life Cycle Assess., 15, 128, 10.1007/s11367-009-0127-z
Farag, 2008, Quantitative methods of materials substitution: application to automotive components, Mater. Des., 29, 374, 10.1016/j.matdes.2007.01.028
Isaac, 2020, Crashworthiness performance of green composite energy absorbing structure with embedded sensing device providing cleaner environment for sustainable maintenance, Sustain. Mater. Technol., 25
Tagliaferri, 2016, Life cycle assessment of future electric and hybrid vehicles: a cradle-to-grave systems engineering approach, Chem. Eng. Res. Des., 112, 298, 10.1016/j.cherd.2016.07.003
Ghosh, 2021, Life cycle energy and greenhouse gas emissions implications of using carbon fiber reinforced polymers in automotive components: front subframe case study, Sustain. Mater. Technol., 28
Mahato, 2018, Static and dynamic behavior of fibrous polymeric composite materials at different environmental conditions, J. Polym. Environ., 26, 1024, 10.1007/s10924-017-1001-x
Witten, 2018, Market developments, trends, outlooks and challenges, Carbon Compos., 2018, 1
Çavdar, 2016, Doğal liflerin otomotiv sanayinde kullanımı, Kastamonu Üniversitesi Orman Fakültesi Derg, 16
dos Santos, 2008, Natural fibers plastic composites for automotive applications, 492
Ertas, 2019, Effects of halloysite nanotube on the performance of natural fiber filled poly (lactic acid) composites, Polym. Compos., 40, 4238, 10.1002/pc.25284
Sangeetha, 2018, State of the art and future prospectives of poly (lactic acid) based blends and composites, Polym. Compos., 39, 81, 10.1002/pc.23906
Mallet, 2014, Improvement of blown film extrusion of poly (lactic acid): structure processing properties relationships, Polym. Eng. Sci., 54, 840, 10.1002/pen.23610
Bhardwaj, 2007, Advances in the properties of polylactides based materials: a review, J. Biobased Mater. Bioenerg., 1, 191, 10.1166/jbmb.2007.023
Solarski, 2005, Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry, Polymer (Guildf), 46, 11187, 10.1016/j.polymer.2005.10.027
Laske, 2015, Enhancing the temperature stability of PLA by compounding strategies, Polym. Eng. Sci., 55, 2849, 10.1002/pen.24176
Dorgan, 2000, Thermal and rheological properties of commercial-grade poly (lactic acid) s, J. Polym. Environ., 8, 1, 10.1023/A:1010185910301
Yang, 2008, Thermal and mechanical properties of chemical crosslinked polylactide (PLA), Polym. Test., 27, 957, 10.1016/j.polymertesting.2008.08.009
Henton, 2005, Polylactic acid technology, Nat. Fibers, Biopolym. Biocompos., 16, 527
Mukherjee, 2011, PLA based biopolymer reinforced with natural fibre: a review, J. Polym. Environ., 19, 714, 10.1007/s10924-011-0320-6
Joshi, 2004, Are natural fiber composites environmentally superior to glass fiber reinforced composites?, Compos. Part A Appl. Sci. Manuf., 35, 371, 10.1016/j.compositesa.2003.09.016
Jang, 2021, Preparation of high-performance transparent glass-fiber reinforced composites based on refractive index-tunable epoxy-functionalized siloxane hybrid matrix, Compos. Sci. Technol., 201, 10.1016/j.compscitech.2020.108527
Leonard, 2009, Fracture behaviour of glass fibre-reinforced polyester composite, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 223, 83
Sathishkumar, 2014, Glass fiber-reinforced polymer composites–a review, J. Reinf. Plast. Compos., 33, 1258, 10.1177/0731684414530790
Al-Homoud, 2005, Performance characteristics and practical applications of common building thermal insulation materials, Build. Environ., 40, 353, 10.1016/j.buildenv.2004.05.013
Cao, 2015, Study of the thermal insulation properties of the glass fiber board used for interior building envelope, Energ. Build., 107, 49, 10.1016/j.enbuild.2015.08.007
Mazumdar, 2019, State of the industry report for glass fiber market, Compos. Manuf. Mag.
Westman, 2010
Silva, 2020, Natural fibers as reinforcement additives for geopolymers–a review of potential eco-friendly applications to the construction industry, Sustain. Mater. Technol., 23
Pilla, 2009, Polylactide-recycled wood fiber composites, J. Appl. Polym. Sci., 111, 37, 10.1002/app.28860
Klyosov, 2007
Spoljaric, 2009, Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties, Compos. Part A Appl. Sci. Manuf., 40, 791, 10.1016/j.compositesa.2009.03.011
Wechsler, 2007, Some of the properties of wood–plastic composites, Build. Environ., 42, 2637, 10.1016/j.buildenv.2006.06.018
Gupta, 2007, Surface properties and adhesion of wood fiber reinforced thermoplastic composites, Colloids Surf. A Physicochem. Eng. Asp., 302, 388, 10.1016/j.colsurfa.2007.03.002
Miller, 2015, Integrating durability-based service-life predictions with environmental impact assessments of natural fiber–reinforced composite materials, Resour. Conserv. Recycl., 99, 72, 10.1016/j.resconrec.2015.04.004
George, 2001, A review on interface modification and characterization of natural fiber reinforced plastic composites, Polym. Eng. Sci., 41, 1471, 10.1002/pen.10846
Lindström, 2017, Maintenance therapy with second generation antipsychotics for bipolar disorder–a systematic review and meta-analysis, J. Affect. Disord., 213, 138, 10.1016/j.jad.2017.02.012
Hundhausen, 2009, Use of alkyl ketene dimer (AKD) for surface modification of particleboard chips, Eur. J. Wood Wood Prod., 67, 37, 10.1007/s00107-008-0275-z
Çaylak, 2021, Mechanical characteristics and hydrophobicity of alkyl ketene dimer compatibilized hybrid biopolymer composites, Polym. Compos., 42, 2324, 10.1002/pc.25980
ASTM International, 2000
ASTM International, 2015
Angın, 2019, Studies on thermal and morphological properties of polyurethane foam filled polypropylene/poly (lactic acid) blends, J. Innov. Sci. Eng., 3, 47
Ndazi, 2011, Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures, Express Polym Lett, 5, 119, 10.3144/expresspolymlett.2011.13
Quero, 2012, Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate, Macromol. Chem. Phys., 213, 36, 10.1002/macp.201100437
ASTM International, 2018
ASTM International, 2017
Wang, 2008, Influence of carbon black on the properties of plasticized poly (lactic acid) composites, Polym. Degrad. Stab., 93, 1044, 10.1016/j.polymdegradstab.2008.03.023
Seo, 2008, Possibility of hydrogen bonding between AKD and cellulose molecules, J. Fac. Agric. Kyushu Univ., 53, 405, 10.5109/12849
Guo, 2019, Thermal properties of wood-plastic composites with different compositions, Materials (Basel), 12, 881, 10.3390/ma12060881
De Silva, 2016, Influence of the processing methods on the properties of poly (lactic acid)/halloysite nanocomposites, Polym. Compos., 37, 861, 10.1002/pc.23244
Saeidlou, 2012, Poly (lactic acid) crystallization, Prog. Polym. Sci., 37, 1657, 10.1016/j.progpolymsci.2012.07.005
Tang, 2014, Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite, RSC Adv., 4, 8985, 10.1039/c3ra44537b
Gregorova, 2011, Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites, Polym. Eng. Sci., 51, 143, 10.1002/pen.21799
Ling, 2020, Wood plastic composites produced from postconsumer recycled polystyrene and coconut shell: effect of coupling agent and processing aid on tensile, thermal, and morphological properties, Polym. Eng. Sci., 60, 202, 10.1002/pen.25273
Jin, 2012
Wang, 2019, Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment, Int. J. Biol. Macromol., 129, 448, 10.1016/j.ijbiomac.2019.02.020
Karademir, 2002, Quantitative determination of alkyl ketene dimer (AKD) retention in paper made on a pilot paper machine, Turkish, J. Agric. For., 26, 253
Thunman, 2002, Thermal conductivity of wood—models for different stages of combustion, Biomass Bioenergy, 23, 47, 10.1016/S0961-9534(02)00031-4
Callister, 2008
Nielsen, 1994
Mihai, 2014, Novel polylactide/triticale straw biocomposites: processing, formulation, and properties, Polym. Eng. Sci., 54, 446, 10.1002/pen.23575
Takemori, 1979, Towards an understanding of the heat distortion temperature of thermoplastics, Polym. Eng. Sci., 19, 1104, 10.1002/pen.760191507
Luo, 2014, Mechanical and thermo-mechanical behaviors of sizing-treated corn fiber/polylactide composites, Polym. Test., 39, 45, 10.1016/j.polymertesting.2014.07.014
Gotro
Qing-Xian, 2001, Theoretical expressions of thermal conductivity of wood, J. For. Res., 12, 43, 10.1007/BF02856799
Wang, 2010, Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation, Compos. Part B Eng., 41, 533, 10.1016/j.compositesb.2010.07.002
Feih, 2007, Tensile strength modeling of glass fiber—polymer composites in fire, J. Compos. Mater., 41, 2387, 10.1177/0021998307075461
Demirel, 2018, Effect of alkyl ketene dimer on the physical, mechanical, and biological durability of plywood, BioResources, 13, 147
Hansen, 1975, Heat conduction in metal-filled polymers: the role of particle size, shape, and orientation, Polym. Eng. Sci., 15, 353, 10.1002/pen.760150506