Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids

International Journal of Thermal Sciences - Tập 50 Số 9 - Trang 1741-1747 - 2011
Madhusree Kole1, T.K. Dey1
1Thermophysical Measurements Laboratory, Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur, WB 721302, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Choi, 1995, Enhancing thermal conductivity of fluid with nanoparticles, 99

Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280, 10.1115/1.2825978

Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3

Xie, 2002, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91, 4568, 10.1063/1.1454184

Das, 2003, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transf., 46, 851, 10.1016/S0017-9310(02)00348-4

Das, 2003, Pool boiling of nano-fluids on horizontal narrow tubes, Int. J. Multiphase Flow, 29, 37, 10.1016/S0301-9322(03)00105-8

You, 2003, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., 83, 3374, 10.1063/1.1619206

Vassallo, 2004, Pool boiling heat transfer experiments in silica–water nano-fluids, Int. J. Heat Mass Transf., 47, 407, 10.1016/S0017-9310(03)00361-2

Kang, 2001, Natural convection of water–fine particle suspension in a rectangular vessel heated and cooled from opposing vertical walls (classification of natural convection in the case of suspension with a narrow-size distribution), Int. J. Heat Mass Transf., 44, 73, 10.1016/S0017-9310(00)00286-6

Putra, 2003, Natural convection of nano-fluids, Heat Mass Transfer, 39, 775, 10.1007/s00231-002-0382-z

Khanafer, 2003, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transf., 46, 39, 10.1016/S0017-9310(03)00156-X

Kim, 2004, Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids, 16, 395, 10.1063/1.1739247

Eastman, 2004, Thermal transport in nanofluids, Ann. Rev. Mater. Res., 34, 219, 10.1146/annurev.matsci.34.052803.090621

Keblinski, 2005, Nanofluids for thermal transport, Mater. Today, 8, 36, 10.1016/S1369-7021(05)70936-6

Das, 2006, Heat transfer in nanofluids – a review, Heat Transfer Eng., 27, 3, 10.1080/01457630600904593

Prasher, 2006, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett., 89, 133108, 10.1063/1.2356113

Namburu, 2007, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Thermal Fluid Sci., 32, 397, 10.1016/j.expthermflusci.2007.05.001

Chen, 2007, Rheological behavior of ethylene glycol based titania nanofluids, Chem. Phys. Lett., 444, 333, 10.1016/j.cplett.2007.07.046

Kwak, 2005, Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea–Aust. Rheol. J., 17, 35

Kulkarni, 2006, Temperature dependent rheological properties of copper oxide nanoparticles suspension, J. Nanosci. Nanotechnol., 6, 1150, 10.1166/jnn.2006.187

Phuoc, 2009, Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3–deionized water nanofluids, Int. J. Thermal Sci., 48, 1294, 10.1016/j.ijthermalsci.2008.11.015

Kole, 2010, Viscosity of alumina nanoparticles dispersed in car engine coolant, Exp. Thermal Fluid Sci., 34, 677, 10.1016/j.expthermflusci.2009.12.009

Kole, 2010, Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant, J. Phys. D Appl. Phys., 43, 315501, 10.1088/0022-3727/43/31/315501

Choi, 2008, Preparation and heat transfer properties of nanoparticle- in-transformer oil dispersions as advanced energy-efficient coolants, Curr. Appl. Phys., 8, 710, 10.1016/j.cap.2007.04.060

Hwang, 2006, Thermal conductivity and lubrication characteristics of nanofluids, Curr. Appl. Phys., 6, e67, 10.1016/j.cap.2006.01.014

Kao, 2007, Copper-oxide brake nanofluid manufactured using arc-submerged nanoparticle synthesis system, J. Alloys Compd., 434, 672, 10.1016/j.jallcom.2006.08.305

1998

Liu, 2006, Enhancement of thermal conductivity with CuO for nanofluids, Chem. Eng. Technol., 29, 72, 10.1002/ceat.200500184

Einstein, 1956

Brinkman, 1952, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571, 10.1063/1.1700493

Batchelor, 1977, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83, 97, 10.1017/S0022112077001062

Nielsen, 1970, Generalized equation for the elastic moduli of composite materials, J. Appl. Phys., 41, 4626, 10.1063/1.1658506

Wang, 1999, Thermal conductivity of nanoparticles-fluid mixture, J. Thermophys. Heat Transf., 13, 474, 10.2514/2.6486

Frankel, 1967, On the viscosity of a concentrated suspension of solid spheres, Chem. Eng. Sci., 22, 847, 10.1016/0009-2509(67)80149-0

Kitano, 1981, An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, Rheol. Acta, 20, 207, 10.1007/BF01513064

Choi, 2000, Effect of shear rate and particle concentration on rheological properties of magnetic particle suspension, J. Mater. Sci., 35, 889, 10.1023/A:1004742223080

Wang, 2003, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transf., 46, 2665, 10.1016/S0017-9310(03)00016-4

Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420

Nan, 1997, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys., 81, 6692, 10.1063/1.365209

Prasher, 2006, Effect of aggregation kinetics on thermal conductivity of nanoscale colloidal solutions (nanofluids), Nano Lett., 6, 1529, 10.1021/nl060992s

Goodwin, 2000

Chen, 2007, Rheological behavior of nanofluids, New J. Phys., 9, 367, 10.1088/1367-2630/9/10/367

Chen, 2009, Rheological behaviour of ethylene glycol–titanate nanotube nanofluids, J. Nanopart. Res., 11, 1513, 10.1007/s11051-009-9599-9

Waite, 2001, Aggregation kinetics and fractal structure of gamma-alumina assemblages, J. Colloid Interface Sci., 241, 333, 10.1006/jcis.2001.7694

Haas, 1993, Structural analysis of anisometric colloidal iron(III)-hydroxide particles and particle-aggregates incorporated in poly(vinylacetate) networks, Colloid Polym. Sci., 271, 1024, 10.1007/BF00659291

Mohraz, 2004, Effect of monomer geometry on the fractal structure of colloidal rod aggregates, Phys. Rev. Lett., 92, 155503, 10.1103/PhysRevLett.92.155503

Micali, 2006, From fractal to nanorod porphyrin J-aggregates. Concentration-induced tuning of the aggregate size, J. Phys. Chem. B, 110, 8289, 10.1021/jp060730e

Lin, 2007, Fractal aggregates of fractal aggregates of the Pt nanoparticles synthesized by the polyol process and poly (N-vinyl- 2-pyrrolidone) reduction, J. Appl. Crystallogr., 40, s540, 10.1107/S0021889807004426

Namburu, 2007, Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids, Micro Nano Lett., 2, 67, 10.1049/mnl:20070037

Sahoo, 2009, Determination of rheological behavior of aluminium oxide nanofluid and development of new viscosity correlations, Pet. Sci. Technol. J., 27, 1757, 10.1080/10916460802640241