Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của mô hình lực kéo quy mô trung điều chỉnh đến quá trình khử lưu huỳnh khí thải trong giường phun hạt bột
Tóm tắt
Một mô hình đa quy mô tối thiểu năng lượng đã được điều chỉnh để mô phỏng cấu trúc mesoscale của quá trình khử lưu huỳnh khí thải trong giường phun hạt bột và đã được xác minh thực nghiệm. Kết quả thu được đã chỉ ra rằng hình thái phun được mô phỏng bởi mô hình lực kéo mesoscale điều chỉnh là không ổn định và có sự phun bùng nổ gián đoạn, không giống như phun ổn định liên tục mà mô hình Gidaspow đã đạt được. Thêm vào đó, sự trộn khí theo hướng kính đã đạt được một cách kỹ lưỡng hơn bằng việc sử dụng mô hình lực kéo mesoscale điều chỉnh. Phân suất khối lượng của nước trong hỗn hợp khí tại điểm ra được xác định bởi mô hình lực kéo dị thể cao gấp 1.5 lần so với mô hình lực kéo đồng thể trong quá trình mô phỏng sự bay hơi của nước. Đối với phản ứng khử lưu huỳnh, hiệu suất khử lưu huỳnh thực nghiệm đạt 75.03%, trong khi các hiệu suất khử lưu huỳnh thu được từ mô hình Gidaspow và mô hình lực kéo mesoscale điều chỉnh lần lượt là 47.63% và 75.08%, cho thấy độ chính xác cao hơn nhiều của kỹ thuật sau.
Từ khóa
#khử lưu huỳnh #mô hình lực kéo mesoscale #giường phun hạt bột #mô phỏng đa quy mô #hiệu suất khử lưu huỳnhTài liệu tham khảo
Ren S H, Hou Y C, Zhang K, Wu W Z. Ionic liquids: functionalization and absorption of SO2. Green Energy & Environment, 2018, 3(3): 179–190
Calkins C, Ge C, Wang J, Anderson M, Yang K. Effects of meteorological conditions on sulfur dioxide air pollution in the North China plain during winters of 2006–2015. Atmospheric Environment, 2016, 147: 296–309
Mathieu Y, Tzanis L, Soulard M, Patarin J, Vierling M, Moliere M. Adsorption of SOx by oxide materials: a review. Fuel Processing Technology, 2013, 114: 81–100
Sun L M, Zhu X F. Practical and theoretical study of the adsorption performances of straw-based tertiary amine-supported material toward sulfur dioxide in flue gas. BioResources, 2018, 13(1): 1132–1142
Huang J T. Sulfur dioxide (SO2) emissions and government spending on environmental protection in China—evidence from spatial econometric analysis. Journal of Cleaner Production, 2018, 175: 431–441
Wang Y, Han R, Kubota J. Is there an environmental Kuznets curve for SO2 emissions? A semi-parametric panel data analysis for China. Renewable & Sustainable Energy Reviews, 2016, 54: 1182–1188
Xu C, Zhao W, Zhang M, Cheng B. Pollution haven or halo? The role of the energy transition in the impact of FDI on SO2 emissions. Science of the Total Environment, 2021, 763: 143002
Xu G W, Guo Q M, Kaneko T, Kato K. A new semi-dry desulfurization process using a powder-particle spouted bed. Advances in Environmental Research, 2000, 4(1): 9–18
Gutiérrez Ortiz F J, Vidal F, Ollero P, Salvador L, Cortés V, Giménez A, Otero P. Pilot-plant technical assessment of wet flue gas desulfurization using limestone. Industrial & Engineering Chemistry Research, 2006, 45(17): 6093–6093
Flagiello D, Di Natale F, Erto A, Lancia A. Wet oxidation scrubbing (WOS) for flue-gas desulphurization using sodium chlorite seawater solutions. Fuel, 2020, 277: 118055
Zhang Y Q, Wang Y X, Liu Y Q, Gao H B, Shi Y Y, Lu M, Yang H Z. Experiments and simulation of varying parameters in cryogenic flue gas desulfurization process based on Aspen Plus. Separation and Purification Technology, 2021, 259: 118223
Zhang Q, Gui K T, Wang X B. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed. Heat and Mass Transfer, 2016, 52(2): 331–336
Wang X, Wang S Y, Wang R C, Yuan Z H, Shao B L, Fan J W. Numerical simulation of semi-dry desulfurization spouted bed using the discrete element method (DEM). Powder Technology, 2021, 378:191–201
Feng R, Sun Z G, Zhang W Q, Huang H, Hu H H, Zhang L, Xie H Y. Improving the desulfurization performance of CaCO3 with sodium humate. IOP Conference Series. Earth and Environmental Science, 2018, 121: 032025
Tao M, Jin B S, Zhong W Q, Yang Y P, Xiao R. Modeling and experimental study on multi-level humidifying of the underfeed circulating spouted bed for flue gas desulfurization. Powder Technology, 2010, 198(1): 93–100
Fan F H, Wang S, Yang S L, Hu J H, Wang H. Numerical investigation of gas thermal property in the gasification process of a spouted bed gasifier. Applied Thermal Engineering, 2020, 181: 115917
Wu F, Zhang X, Zhou W J, Ma X X. Numerical simulation and optimization of hydrodynamics in a novel integral multi-jet spout-fluidized bed. Powder Technology, 2018, 336: 112–121
Du J L, Yue K, Wu F, Ma X X, Hui Z Q. Numerical investigation on the water vaporization during semi dry flue gas desulfurization in a three-dimensional spouted bed. Powder Technology, 2021, 383: 471–483
Guo Q, Padash A, Boyce C M. A two fluid modeling study of bubble collapse due to bubble interaction in a fluidized bed. Chemical Engineering Science, 2021, 232: 116377
Hu S W, Liu X H. A CFD-PBM-EMMS integrated model applicable for heterogeneous gas-solid flow. Chemical Engineering Journal, 2020, 383: 383
Wu F, Bai J H, Yue K, Gong M, Ma X X, Zhou W J. Eulerian-Eulerian numerical study of the flue gas desulfurization process in a semidry spouted bed reactor. ACS Omega, 2020, 5(7): 3282–3293
Wang T Y, Gao Q H, Deng A M, Tang T Q, He Y R. Numerical and experimental investigations of instability in a spouted bed with non-spherical particles. Powder Technology, 2021, 379: 231–240
Adnan M, Sun J, Ahmad N, Wei J J. Comparative CFD modeling of a bubbling bed using a Eulerian-Eulerian two-fluid model (TFM) and a Eulerian-Lagrangian dense discrete phase model (DDPM). Powder Technology, 2021, 383: 418–442
Wu F, Yue K, Gao W W, Gong M, Ma X X, Zhou W J. Numerical simulation of semi-dry flue gas desulfurization process in the powder-particle spouted bed. Advanced Powder Technology, 2020, 31(1): 323–331
Gao X, Wu C, Cheng Y W, Wang L J, Li X. Experimental and numerical investigation of solid behavior in a gas-solid turbulent fluidized bed. Powder Technology, 2012, 228: 1–13
Du W, Bao X J, Xu J, Wei W S. Computational fluid dynamics (CFD) modeling of spouted bed: assessment of drag coefficient correlations. Chemical Engineering Science, 2006, 61(5): 1401–1420
Esmaili E, Mahinpey N. Adjustment of drag coefficient correlations in three dimensional CFD simulation of gas-solid bubbling fluidized bed. Advances in Engineering Software, 2011, 42(6): 375–386
Wu F, Yang C L, Che X X, Ma X X, Yan Y, Zhou W J. Numerical and experimental study of integral multi-jet structure impact on gas-solid flow in a 3D spout-fluidized bed. Chemical Engineering Journal, 2020, 393: 124737
Gao J S, Chang J, Lan X Y, Yang Y, Lu C X, Xu C M. CFD Modeling of mass transfer and stripping efficiency in FCCU strippers. AIChE Journal. American Institute of Chemical Engineers, 2008, 54(5): 1164–1177
Motlagh A H A, Grace J R, Salcudean M, Hrenya C M. New structure-based model for Eulerian simulation of hydrodynamics in gas-solid fluidized beds of Geldart group “A” particles. Chemical Engineering Science, 2014, 120: 22–36
Lu B N, Wang W, Li J H. Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows. Chemical Engineering Science, 2009, 64(15): 3437–3447
Wu Y Y, Shi X G, Gao J S, Lan X Y. A four-zone drag model based on cluster for simulating gas-solids flow in turbulent fluidized beds. Chemical Engineering and Processing, 2020, 155: 108056
Kshetrimayum K S, Park S, Han C, Lee C J. EMMS drag model for simulating a gas-solid fluidized bed of geldart B particles: effect of bed model parameters and polydisperity. Particuology, 2020, 51: 142–154
He M M, Zhao B D, Wang J W. A unified EMMS-based constitutive law for heterogeneous gas-solid flow in CFB risers. Chemical Engineering Science, 2020, 225: 115797
Zhang L, Qiu X P, Wang L M, Li J H. A stability condition for turbulence model: from EMMS model to EMMS-based turbulence model. Particuology, 2014, 16: 142–154
Zhang L, Chen J H, Huang W L, Li J H. A direct solution to multi-objective optimization: validation in solving the EMMS model for gas-solid fluidization. Chemical Engineering Science, 2018, 192: 499–506
Li J H, Huang W L, Chen J H, Ge W, Hou C F. Mesoscience based on the EMMS principle of compromise in competition. Chemical Engineering Journal, 2018, 333: 327–335
Ge W, Li J H. Physical mapping of fluidization regimes—the EMMS approach. Chemical Engineering Science, 2002, 57(18): 3993–4004
Yang N, Wang W, Ge W, Wang L N, Li J H. Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach. Industrial & Engineering Chemistry Research, 2004, 43(18): 5548–5561
Wang J W, Liu Y N. EMMS-based Eulerian simulation on the hydrodynamics of a bubbling fluidized bed with FCC particles. Powder Technology, 2010, 197(3): 241–246
Liu X H, Hu S W, Jiang Y F, Li J H. Extension and application of energy-minimization multi-scale (EMMS) theory for full-loop hydrodynamic modeling of complex gas-solid reactors. Chemical Engineering Journal, 2015, 278: 492–503
Song F F, Li F, Wang W, Li J H. A sub-grid EMMS drag for multiphase particle-in-cell simulation of fluidization. Powder Technology, 2018, 327: 420–429
Ma X X, Kaneko T, Xu G, Kato K. Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder-particle spouted bed. Fuel, 2001, 80(5): 673–680
Ma X X, Kaneko T, Tashimo T, Yoshida T, Kato K. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed. Chemical Engineering Science, 2000, 55(20): 4643–4652