Effect of acrylamide on the distribution of microtubule-associated proteins (MAP1 and MAP2) in selected regions of rat brain
Tóm tắt
The effect of acrylamide treatment on the immunocytochemical localization of microtubule-associated proteins (MAP1 and MAP2) was studied in different brain regions (cerebellum, cerebral cortex, and hippocampus) of adult rats. Animals were treated with acrylamide (estimated mean dose: 15 mg/kg/d) orally for 2 wk when they showed slight hindlimb weakness. Immunoreactivity for MAP1 and MAP2 was detected in tissue sections with monoclonal antibodies according to the Sternberger’s peroxidase-antiperoxidase technique. Intense MAP1 immunoreactivity was observed in neuronal perikarya and dendrites, with faint staining in axons. By contrast, MAP2 immunostaining was selectively observed in dendrites and neuronal perikarya. Treatment of animals with acrylamide reduced immunoreactivity for both MAP1 and MAP2 in hippocampus and cerebellum, with relatively little change in cerebral cortex. Loss of MAPs immunoreactivity in affected brain areas likely proceeded from dendrite to perikaryon. The results of this study indicate that hippocampal compromise is part of the neurotoxic picture associated with rodent exposure to acrylamide.
Tài liệu tham khảo
Allen R. D., Metuzals J., Tasaki I., Brady S. T., and Gilbert S. P. (1982) Fast axonal transport in squid giant axon.Science 218, 1127–1129.
Bernhardt R. and Matus A. (1984) Light and electron microscopic studies on the distribution of microtubule associated protein 2 in rat brain: A difference between dendritic and axonal cytoskeletons.J. Comp. Neurol. 226, 203–221.
Binder L. I., Frankfurter A., and Rebhun L. I. (1985) The distribution of tau polypeptides in the mammalian central nervous system.J. Cell Biol. 101, 1371–1378.
Binder L. I., Frankfurter A., and Rebhun L. I. (1986) Differential localization of MAP 2 and tau in mammalian neuronsin situ.Ann. NY Acad. Sci. 466, 145–166.
Bloom G. S., Shoenfield T. A., and Vallee R. B. (1984) Widespread distribution of the major polypeptide component of MAP 1 (microtubule associated protein 1) in the nervous system.J. Cell Biol. 98, 320–330.
Bradford H. F. (1986)Chemical Neurobiology. W. H. Freeman, New York.
Brady S. T. and Black M. (1986) Axonal transport of microtubule proteins: Cytolytic variation of tubulin and MAPs in neurons.Ann. NY Acad. Sci. 46, 199–217.
Brady S. T., Lasek R. J., and Allen R. D. (1985) Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanisms.Cell Motility 5, 81–101.
Brimijoin S. (1984) The role of axonal transport in nerve disease, inPeripheral Neuropathy (Dyck P. J., Thomas P. K., Lambert E. H., and Bunge R., eds.), pp. 477–493, W. B. Saunders, Philadelphia.
Brion J. P., Guilleminot J., Couchie D., Flament-Durand J., and Nunez J. (1988) Both adult and juvenile tau microtubule associated proteins are axon specific in the developing and adult rat cerebellum.Neuroscience 25, 139–146.
Burgoyne R. D. and Cumming R. (1984) Ontogeny of microtubule associated protein 2 in rat cerebellum: Differential expression of the doublet polypeptides.Neuroscience 11, 156–167.
Burns R. G., Islam K., and Chapman R. (1984) The multiple phosphorylation of the microtubule associated protein MAP 2 controls the MAP 2 tubulin interaction.Eur. J. Biochem. 141, 609–615.
Caceres A., Payne M. R., Binder L. I., and Steward O. (1983) Immunohistochemical localization of actin and microtubule associated protein MAP2 in dendritic spines.Proc. Natl. Acad. Sci. USA 80, 1738–1742.
Cavanagh J. B. (1982) The pathokinetics of acrylamide intoxication: A reassessment of the problem.Neuropathol. Appl. Neurobiol. 8, 315–336.
Cavanagh J. B. and Gysbers M. F. (1980) “Dying-back” above a nerve ligature produced by acrylamide.Acta Neuropathol. 51, 169–177.
Cavanagh J. B. and Gysbers M. F. (1981) Ultrastructural changes in axons caused by acrylamide above a nerve ligature. Neuropathol.Appl. Neurobiol. 7, 315–326.
Cavanagh J. B. and Nolan C. C. (1982) Selective loss of Purkinje cells from the rat cerebellum caused by acrylamide and the responses of β-glucuronidase and β-galactosidase.Acta Neuropathol. 58, 210–214.
Chan S. Y., Worth R., and Ochs S. (1980) Block of axoplasmic transportin vitro by vinca alkaloids.J. Neurobiol. 11, 251–264.
Chauhan N. B., Sabri M. I., and Spencer P. S. (1991) Acrylamide alters the distribution of MAP1 and MAP2 immunoreactivity in rat brain.Soc. Neurosci. Abstr. 17, 1465.
Cotman C. W. and Kelly P. T. (1980) Macromolecular architecture of C.N.S. synapses, inThe Cell Surface and Neuronal Function (Cotman C. W., Post G., and Nicholson G. L., eds.), pp. 505–533, Elsevier North Holland, Amsterdam.
De Camilli P., Miller P., Navone F., Theurkauf W. E., and Vallee R. B. (1984) Distribution of microtubule associated protein 2 (MAP2) in the nervous system of the rat studied by immunofluorescence.Neuroscience 11, 819–846.
Drake P. F. and Lasek R. J. (1984) Regional differences in the neuronal skeleton.J. Neuroscience 4, 1173–1186.
Dustin P. (1984)Microtubules, Springer-Verlag, Berlin.
Fullerton P. M. (1969) Electrophysiological and histological observations on peripheral nerves in acrylamide poisoning in man.J. Neurol. Neurosurg. Psychiat. 32, 186–192.
Fullerton P. M. and Barnes J. M. (1966) Peripheral neuropathy in rats produced by acrylamide.Br. J. Ind. Med. 23, 210–221.
Garland T. O. and Patterson H. M. W. (1967) Six cases of acrylamide poisoning.Br. Med. J. 4, 134–138.
Ghetti B., Wisniewski H. M., Cook R. D., and Schaumburg H. H. (1973) Changes in the CNS after acute and chronic acrylamide intoxication.Am. J. Pathol. 70, 78a.
Ghetti B., Alyea C., North J., and Ochs S. (1982) Effect of vinblastine on the microtubule density in relation to axoplasmic transport, inAxoplasmic Transport (Weiss D. G., ed.), pp. 322–327, Springer, New York.
Huber G. and Matus A. (1984a) Immunohistochemical localization of microtubule associated protein in the rat cerebellum using monoclonal antibodies.J. Cell Biol. 98, 777–781.
Huber G. and Matus A. (1984b) Differences in the cellular distribution of two microtubule associated proteins MAP1 and MAP2 in rat brain.J. Neurosci. 4, 151–160.
Igisu H., Goto I., Kawamura Y., Kato M., Izumi K., and Kuroiwa Y. (1975) Acrylamide encephalopathy due to well water pollution.J. Neurol. Neurosurg. Psychiat. 38, 581.
Jameson L. and Caplow M. (1981) Modification of microtubule steady-state dynamics by phosphorylation of the microtubule-associated proteins.Proc. Natl. Acad. Sci. USA 78, 3413–3417.
Kim H., Binder L., and Rosenbaum J. L. (1979) The periodic association of MAP2 with brain microtubulesin vitro.J. Cell Biol. 80, 266–276.
Kirschner M. (1978) Microtubule assembly and nucleation.Int. Rev. Cytol. 54, 1–71.
Kitagawa K., Matsumoto M., Niinobe M., Mikoshiba K., Hata R., Ueda H., Handa N., Fukunga R., Isaka Y., Kimura K., and Kamada T. (1989) Microtubule associated protein 2 as a sensitive marker for cerebral ischemic damage—immunohistochemical investigation of dendritic damage.Neuroscience 31, 401–411.
Kowall N. K. and Kosik K. S. (1987) Axonal disruption and aberrant location of tau protein characterize neuropil pathology of Alzheimer’s disease.Ann. Neurol. 22, 639–643.
Matus A. (1988) Microtubule associated proteins: their potenital role in determining neuronal morphology.Ann. Rev. Neurosci. 11, 29–44.
Matus A., Burnhardt R., and Hugh-Jones T. (1981) High molecular weight microtubule associated proteins are preferentially associated with dendritic microtubules in brain.Proc. Natl. Acad. Sci. USA 78, 3010–3014.
Miller P., Walter U., Theurkauf W. E., Vallee R. B., and De Camilli P. (1982) Frozen tissue sections as an experimental system to reveal specific binding sites for the regulatory subunit of type Ii cyclic-AMP dependent protein kinase in neurons.Proc. Natl. Acad. Sci. USA 79, 5562–5566.
Murphy D. B. and Borisy G. G. (1975) Association of high molecular weight proteins with microtubules and their role in microtubule assemblyin vitro.Proc. Natl. Acad. Sci. USA 72, 2696–2700.
Murphy D. B., Vallee R., and Borisy G. (1977) Identity and polymerization-stimulatory activity of non-tubulin proteins associated with microtubules.Biochemistry 16, 2598–2605.
Nafstad P. H. J. and Blackstad T. W. (1966) Distribution of mitochondria in pyramidal cells and boutons in hippocampal cortex.Z. Zellforsch. Mikrosk. Anat. 73, 234–245.
Olmsted J. B. (1986) Microtubule associated proteins.Ann. Rev. Cell Biol. 2, 421–457.
Peng I., Binder L., and Black M. (1986) Biochemical and immunological analysis of cytoskeletal domains of neurons.J. Cell Biol. 102, 252–262.
Prineas J. (1969) The pathogenesis of dying-back polyneuropathies, II. An ultrastructural study of experimental acrylamide intoxication in the cat.J. Neuropathol. Exp. Neurol. 28, 598–621.
Sabri M. I. (1983)In vitro andin vivo inhibition of glycolytic enzymes by acrylamide.Neurochem. Pathol. 1, 179–191.
Sabri M. I. and Spencer P. S. (1980) Toxic distal axonopathy: Biochemical studies and hypothetical mechanisms, inExperimental and Clinical Neurotoxicology (Spencer P. S. and Schaumburg H. H., eds.), pp. 206–219, Williams and Wilkins, Baltimore, MD.
Sabri M. I. and Spencer P. S. (1990) Acrylamide impairs fast and slow axonal transport in rat optic system.Neurochem. Res. 15, 603–608.
Schaumburg H. H. and Spencer P. S. (1979) Clinical and experimental studies of distal axonopathy: a frequent form of brain and nerve damage produced by environmental chemical hazards.Ann. NY Acad. Sci. 329, 14–19.
Schaumburg H. H., Wisniewski H., and Spencer P. S. (1974) Ultrastructural studies of the dying-back process. 1. Peripheral nerve terminals and axon degeneration in systemic acrylamide intoxication.J. Neuropathol. Exp. Neurol. 33, 260–284.
Sickles D. W. (1989) Toxic neurofilamentous axonopathies and fast anterograde axonal transport. 1. The effects of single doses of acrylamide on the rate and capacity of transport.Neurotoxicology 10, 91–101.
Sickles D. W., Fowler S. R., and Testino A. R. (1990) Effects of neurofilamentous axonopathy-producing neurotoxicants onin vitro production of ATP by brain mitochondria.Brain Res. 528, 25–31.
Sloboda R. D. and Rosenbaum J. L. (1979) Decoration and stabilization of intact, smooth-walled microtubules with microtubule associated proteins.Biochemistry 18, 48–55.
Sloboda R. D., Rudolf S. A., Rosenbaum J. L., and Greengard P. (1975) Cyclic-AMP mediated endogenous phosphorylation of a microtubule associated protein.Proc. Natl. Acad. Sci. USA 72, 177–181.
Sloboda R. D., Dentler W. L., and Rosenbaum J. L. (1976) Microtubule associated proteins and the stimulation of tubulin assemblyin vitro.Biochemistry 15, 4497–4505.
Spencer P. S. and Schaumburg H. H. (1974a) A review of acrylamide neurotoxicity Part I. Properties, uses and human exposure.Can. J. Neurol. Sci. 1, 143–52.
Spencer P. S. and Schaumburg H. H. (1974b) A review of acrylamide neurotoxicity. Part II. Experimental animal neurotoxicity and pathologic mechanisms.Can. J. Neurol. Sci. 1, 152–169.
Spencer P. S. and Schaumburg H. H. (1977) Ultrastructural studies of the dying-back process. III. The evolution of experimental peripheral giant axonal disease.J. Neuropathol. Exp. Neurol. 36, 276–299.
Spencer P. S., Miller M. S., Ross S. M., Schwab B. W., and Sabri M. I. (1985) Biochemical mechanisms underlying primary degeneration of axons, inHandbook of Neurochemistry, 2nd ed., vol. 9 (Lajtha A., ed.), pp. 31–65, Plenum, New York.
Sternberger L. A. (1979)Immunocytochemistry (2nd ed.), Wiley, New York.
Theurkauf W. E. and Vallee R. B. (1982) Molecular characterization of the cyclic-AMP dependent protein kinase bound to microtubule associated protein 2.J. Biol. Chem. 257, 3284–3290.
Torre E. R. and Steward O. (1992) Demonstration of local protein synthesis within dendrites using a new cell culture system that permits the isolation of living axons and dendrites from their cell bodies.J. Neurosci. 12, 762–772.
Tytell M., Brady S. T., and Lasek R. J. (1984) Axonal transport of a subclass of T proteins: Evidence for the regional differentiation of microtubules in neurons.Proc. Natl. Acad. Sci. USA 81, 1570–1574.
Vale R. D., Banker C., and Hall Z. W. (1992) The neuronal cytoskeleton inAn Introduction to Molecular Neurobiology (Hall Z. W., ed.) pp. 206–219, Sinauer, Sunderland, MA.
Vallee R. B. (1980) Structure and phosphorylation of microtubule associated protein 2 (MAP2).Proc. Natl. Acad. Sci. USA 77, 3206–3210.
Vallee R. B. and Bloom G. S. (1991) Mechanisms of fast and slow axonal transport.Ann. Rev. Neurosci. 14, 59–92.
Zeman W. and Innes J. R. M. (1963)Craigie’s Neuroanatomy of the Rat. Academic, New York.