Effect of Y partially substituting La on the phase structure and hydrogen storage property of La–Mg–Ni alloys

Journal of Physics and Chemistry of Solids - Tập 167 - Trang 110744 - 2022
Wei Zhang1, Dongliang Zhao1, Yanghuan Zhang1,2, Jun Li3, Shihai Guo1, Yan Qi1, Jinliang Gao3
1Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China
2Collaborative Innovation Center of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, China
3China Rare Earth New Material (Weishan) Co., Ltd., Jining, 277600, China

Tài liệu tham khảo

Ball, 2015, The hydrogen economy – vision or reality?, Int. J. Hydrogen Energy, 40, 7903, 10.1016/j.ijhydene.2015.04.032 Chen, 2022, A comparative study on hydrogen storage properties of as-cast and extruded Mg-4.7Y-4.1Nd-0.5Zr alloys, J. Phys. Chem. Solid., 161, 10.1016/j.jpcs.2021.110483 Abdellaoui, 2016, First principle study of hydrogen storage in doubly substituted Mg based hydrides Mg5MH12 (M = B, Li) and Mg4BLiH12, Int. J. Hydrogen Energy, 41, 20908, 10.1016/j.ijhydene.2016.04.122 Hwang, 2014, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 42, 10.1016/j.coche.2014.04.004 Ali, 2021, An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials, Int. J. Hydrogen Energy, 46, 31674, 10.1016/j.ijhydene.2021.07.058 Youn, 2017, Enhancement of hydrogen sorption properties of MgH2 with a MgF2 catalyst, Int. J. Hydrogen Energy, 42, 20120, 10.1016/j.ijhydene.2017.06.130 Zhang, 2015, Development and application of hydrogen storage, J. Iron Steel Res. Int., 22, 757, 10.1016/S1006-706X(15)30069-8 Ozolins, 2009, First-principles computational discovery of materials for hydrogen storage, J. Phys. Conf. Ser., 180, 10.1088/1742-6596/180/1/012076 Sakintuna, 2007, Metal hydride materials for solid hydrogen storage: a review, Int. J. Hydrogen Energy, 32, 1121, 10.1016/j.ijhydene.2006.11.022 Abe, 2019, Hydrogen energy, economy and storage: review and recommendation, Int. J. Hydrogen Energy, 44, 15072, 10.1016/j.ijhydene.2019.04.068 Carraro, 2018, Comparative study of hydrogen storage on metal doped mesoporous materials, Chem. Phys. Lett., 701, 93, 10.1016/j.cplett.2018.04.044 Banger, 2018, Hydrogen storage in lithium hydride: a theoretical approach, J. Phys. Chem. Solid., 115, 6, 10.1016/j.jpcs.2017.11.027 Ismail, 2020, The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloys, 8, 832, 10.1016/j.jma.2020.04.002 Zheng, 2015, A new solid material for hydrogen storage, Int. J. Hydrogen Energy, 40, 10502, 10.1016/j.ijhydene.2015.07.015 Imamura, 2005, High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling, J. Alloys Compd., 386, 211, 10.1016/j.jallcom.2004.04.145 Edalati, 2018, Design and synthesis of a magnesium alloy for room temperature hydrogen storage, Acta Mater., 149, 88, 10.1016/j.actamat.2018.02.033 Gao, 2017, Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling, J. Iron Steel Res. Int., 24, 198, 10.1016/S1006-706X(17)30028-6 Wu, 2018, Catalytic effect of graphene on the hydrogen storage properties of Mg-Li alloy, Mater. Chem. Phys., 207, 221, 10.1016/j.matchemphys.2017.12.069 Zhang, 2017, Improved hydrogen storage properties of MgH2 with Ni-based compounds, Int. J. Hydrogen Energy, 42, 24247, 10.1016/j.ijhydene.2017.07.220 Zhang, 2019, State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage, J. Alloys Compd., 782, 796, 10.1016/j.jallcom.2018.12.217 Paul, 2021, Effect of ball milling and iron mixing on structural and morphological properties of magnesium for hydrogen storage application, Mater. Today Proc., 42, 1673, 10.1016/j.matpr.2020.08.035 Jiang, 2018, Hydrogen storage properties of Y-Mg-Cu-H nanocomposite obtained by hydrogen-induced decomposition of YMg4Cu intermetallic, J. Alloys Compd., 751, 176, 10.1016/j.jallcom.2018.04.121 Pukazhselvan, 2014, Hydrogen storage characteristics of magnesium impregnated on the porous channels of activated charcoal scaffold, Int. J. Hydrogen Energy, 39, 20045, 10.1016/j.ijhydene.2014.10.038 Rahmalina, 2020, The recent development on MgH2 system by 16 wt.% nickel addition and particle size reduction through ball milling: a noticeable hydrogen capacity up to 5 wt.% at low temperature and pressure, Int. J. Hydrogen Energy, 45, 29046, 10.1016/j.ijhydene.2020.07.209 Dornheim, 2007, Hydrogen storage in magnesium-based hydrides and hydride composites, Scripta Mater., 56, 841, 10.1016/j.scriptamat.2007.01.003 Zhou, 2019, Effect of Pr3Al11 nanoparticles on crystallite growth kinetics of nanocrystalline Mg, J. Alloys Compd., 804, 299, 10.1016/j.jallcom.2019.07.047 Zhou, 2020, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50, 178, 10.1016/j.jmst.2020.01.063 Le, 2021, Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4, Int. J. Hydrogen Energy, 46, 23723, 10.1016/j.ijhydene.2021.04.150 Dell'Era, 2017, Synthesis and characterization of a Mg-Ni-RE alloy for hydrogen storage, Int. J. Hydrogen Energy, 42, 26333, 10.1016/j.ijhydene.2017.08.207 Xie, 2017, Dehydrogenation steps and factors controlling desorption kinetics of a Mg-Ce hydrogen storage alloy, Int. J. Hydrogen Energy, 42, 21121, 10.1016/j.ijhydene.2017.07.046 Agarwal, 2015, Effect of ZrCrCo alloy on hydrogen storage properties of Mg, J. Alloys Compd., 645, S518, 10.1016/j.jallcom.2014.12.068 Liang, 1998, Hydrogen absorption properties of a mechanically milled Mg–50 wt.% LaNi5 composite, J. Alloys Compd., 268, 302, 10.1016/S0925-8388(97)00607-5 Ivanov, 1987, Magnesium mechanical alloys for hydrogen storage, J. Less Common Met., 131, 25, 10.1016/0022-5088(87)90497-8 Liu, 2011, Synthesis and hydrogen storage properties of ultrafine Mg–Zn particles, Int. J. Hydrogen Energy, 36, 3515, 10.1016/j.ijhydene.2010.12.049 Sadhasivam, 2014, Effects of nano size mischmetal and its oxide on improving the hydrogen sorption behaviour of MgH2, Int. J. Hydrogen Energy, 39, 7353 Pozzo, 2009, Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces, Int. J. Hydrogen Energy, 34, 1922, 10.1016/j.ijhydene.2008.11.109 Yap, 2017, The hydrogen storage properties of Mg-Li-Al composite system catalyzed by K2ZrF6, J. Phys. Chem. Solid., 104, 201, 10.1016/j.jpcs.2017.01.021 Yong, 2019, Improved hydrogen storage kinetics and thermodynamics of RE-Mg-based alloy by co-doping Ce–Y, Int. J. Hydrogen Energy, 44, 16765, 10.1016/j.ijhydene.2019.04.281 Chen, 2018, Tunable eutectic structure and de-/hydrogenation behavior via Cu substitution in Mg-Ni alloy, J. Power Sources, 401, 186, 10.1016/j.jpowsour.2018.08.086 Zhang, 2021, Improvement of substituting La with Ce on hydrogen storage thermodynamics and kinetics of Mg-based alloys, Int. J. Hydrogen Energy, 46, 28719, 10.1016/j.ijhydene.2021.06.127 Luo, 2013, Enhanced reversible hydrogen storage properties of a Mg-In-Y ternary solid solution, Int. J. Hydrogen Energy, 38, 10912, 10.1016/j.ijhydene.2013.03.007 Montone, 2007, Nano-micro MgH2-Mg2NiH4 composites: tayloring a multichannel system with selected hydrogen sorption properties, Int. J. Hydrogen Energy, 32, 2926, 10.1016/j.ijhydene.2006.12.021 Yang, 2016, Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg88Y12 binary alloy, Int. J. Hydrogen Energy, 41, 2689, 10.1016/j.ijhydene.2015.12.099 Latroche, 2004, Structural and thermodynamic properties of metallic hydrides used for energy storage, J. Phys. Chem. Solid., 65, 517, 10.1016/j.jpcs.2003.08.037 Liu, 2014, Understanding the role of few-layer graphene nanosheets in enhancing the hydrogen sorption kinetics of magnesium hydride, ACS Appl. Mater. Interfaces, 6, 11038, 10.1021/am502755s Avrami, 1941, Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys., 9, 177, 10.1063/1.1750872 Kimura, 2013, Hydrogen absorption of catalyzed magnesium below room temperature, Int. J. Hydrogen Energy, 38, 13728, 10.1016/j.ijhydene.2013.08.043 Falahati, 2013, Evaluation of hydrogen sorption models for AB5-type metal alloys by employing a gravimetric technique, Int. J. Hydrogen Energy, 38, 8838, 10.1016/j.ijhydene.2013.04.148