Effect of Y partially substituting La on the phase structure and hydrogen storage property of La–Mg–Ni alloys
Tài liệu tham khảo
Ball, 2015, The hydrogen economy – vision or reality?, Int. J. Hydrogen Energy, 40, 7903, 10.1016/j.ijhydene.2015.04.032
Chen, 2022, A comparative study on hydrogen storage properties of as-cast and extruded Mg-4.7Y-4.1Nd-0.5Zr alloys, J. Phys. Chem. Solid., 161, 10.1016/j.jpcs.2021.110483
Abdellaoui, 2016, First principle study of hydrogen storage in doubly substituted Mg based hydrides Mg5MH12 (M = B, Li) and Mg4BLiH12, Int. J. Hydrogen Energy, 41, 20908, 10.1016/j.ijhydene.2016.04.122
Hwang, 2014, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 42, 10.1016/j.coche.2014.04.004
Ali, 2021, An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials, Int. J. Hydrogen Energy, 46, 31674, 10.1016/j.ijhydene.2021.07.058
Youn, 2017, Enhancement of hydrogen sorption properties of MgH2 with a MgF2 catalyst, Int. J. Hydrogen Energy, 42, 20120, 10.1016/j.ijhydene.2017.06.130
Zhang, 2015, Development and application of hydrogen storage, J. Iron Steel Res. Int., 22, 757, 10.1016/S1006-706X(15)30069-8
Ozolins, 2009, First-principles computational discovery of materials for hydrogen storage, J. Phys. Conf. Ser., 180, 10.1088/1742-6596/180/1/012076
Sakintuna, 2007, Metal hydride materials for solid hydrogen storage: a review, Int. J. Hydrogen Energy, 32, 1121, 10.1016/j.ijhydene.2006.11.022
Abe, 2019, Hydrogen energy, economy and storage: review and recommendation, Int. J. Hydrogen Energy, 44, 15072, 10.1016/j.ijhydene.2019.04.068
Carraro, 2018, Comparative study of hydrogen storage on metal doped mesoporous materials, Chem. Phys. Lett., 701, 93, 10.1016/j.cplett.2018.04.044
Banger, 2018, Hydrogen storage in lithium hydride: a theoretical approach, J. Phys. Chem. Solid., 115, 6, 10.1016/j.jpcs.2017.11.027
Ismail, 2020, The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloys, 8, 832, 10.1016/j.jma.2020.04.002
Zheng, 2015, A new solid material for hydrogen storage, Int. J. Hydrogen Energy, 40, 10502, 10.1016/j.ijhydene.2015.07.015
Imamura, 2005, High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling, J. Alloys Compd., 386, 211, 10.1016/j.jallcom.2004.04.145
Edalati, 2018, Design and synthesis of a magnesium alloy for room temperature hydrogen storage, Acta Mater., 149, 88, 10.1016/j.actamat.2018.02.033
Gao, 2017, Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling, J. Iron Steel Res. Int., 24, 198, 10.1016/S1006-706X(17)30028-6
Wu, 2018, Catalytic effect of graphene on the hydrogen storage properties of Mg-Li alloy, Mater. Chem. Phys., 207, 221, 10.1016/j.matchemphys.2017.12.069
Zhang, 2017, Improved hydrogen storage properties of MgH2 with Ni-based compounds, Int. J. Hydrogen Energy, 42, 24247, 10.1016/j.ijhydene.2017.07.220
Zhang, 2019, State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage, J. Alloys Compd., 782, 796, 10.1016/j.jallcom.2018.12.217
Paul, 2021, Effect of ball milling and iron mixing on structural and morphological properties of magnesium for hydrogen storage application, Mater. Today Proc., 42, 1673, 10.1016/j.matpr.2020.08.035
Jiang, 2018, Hydrogen storage properties of Y-Mg-Cu-H nanocomposite obtained by hydrogen-induced decomposition of YMg4Cu intermetallic, J. Alloys Compd., 751, 176, 10.1016/j.jallcom.2018.04.121
Pukazhselvan, 2014, Hydrogen storage characteristics of magnesium impregnated on the porous channels of activated charcoal scaffold, Int. J. Hydrogen Energy, 39, 20045, 10.1016/j.ijhydene.2014.10.038
Rahmalina, 2020, The recent development on MgH2 system by 16 wt.% nickel addition and particle size reduction through ball milling: a noticeable hydrogen capacity up to 5 wt.% at low temperature and pressure, Int. J. Hydrogen Energy, 45, 29046, 10.1016/j.ijhydene.2020.07.209
Dornheim, 2007, Hydrogen storage in magnesium-based hydrides and hydride composites, Scripta Mater., 56, 841, 10.1016/j.scriptamat.2007.01.003
Zhou, 2019, Effect of Pr3Al11 nanoparticles on crystallite growth kinetics of nanocrystalline Mg, J. Alloys Compd., 804, 299, 10.1016/j.jallcom.2019.07.047
Zhou, 2020, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50, 178, 10.1016/j.jmst.2020.01.063
Le, 2021, Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4, Int. J. Hydrogen Energy, 46, 23723, 10.1016/j.ijhydene.2021.04.150
Dell'Era, 2017, Synthesis and characterization of a Mg-Ni-RE alloy for hydrogen storage, Int. J. Hydrogen Energy, 42, 26333, 10.1016/j.ijhydene.2017.08.207
Xie, 2017, Dehydrogenation steps and factors controlling desorption kinetics of a Mg-Ce hydrogen storage alloy, Int. J. Hydrogen Energy, 42, 21121, 10.1016/j.ijhydene.2017.07.046
Agarwal, 2015, Effect of ZrCrCo alloy on hydrogen storage properties of Mg, J. Alloys Compd., 645, S518, 10.1016/j.jallcom.2014.12.068
Liang, 1998, Hydrogen absorption properties of a mechanically milled Mg–50 wt.% LaNi5 composite, J. Alloys Compd., 268, 302, 10.1016/S0925-8388(97)00607-5
Ivanov, 1987, Magnesium mechanical alloys for hydrogen storage, J. Less Common Met., 131, 25, 10.1016/0022-5088(87)90497-8
Liu, 2011, Synthesis and hydrogen storage properties of ultrafine Mg–Zn particles, Int. J. Hydrogen Energy, 36, 3515, 10.1016/j.ijhydene.2010.12.049
Sadhasivam, 2014, Effects of nano size mischmetal and its oxide on improving the hydrogen sorption behaviour of MgH2, Int. J. Hydrogen Energy, 39, 7353
Pozzo, 2009, Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces, Int. J. Hydrogen Energy, 34, 1922, 10.1016/j.ijhydene.2008.11.109
Yap, 2017, The hydrogen storage properties of Mg-Li-Al composite system catalyzed by K2ZrF6, J. Phys. Chem. Solid., 104, 201, 10.1016/j.jpcs.2017.01.021
Yong, 2019, Improved hydrogen storage kinetics and thermodynamics of RE-Mg-based alloy by co-doping Ce–Y, Int. J. Hydrogen Energy, 44, 16765, 10.1016/j.ijhydene.2019.04.281
Chen, 2018, Tunable eutectic structure and de-/hydrogenation behavior via Cu substitution in Mg-Ni alloy, J. Power Sources, 401, 186, 10.1016/j.jpowsour.2018.08.086
Zhang, 2021, Improvement of substituting La with Ce on hydrogen storage thermodynamics and kinetics of Mg-based alloys, Int. J. Hydrogen Energy, 46, 28719, 10.1016/j.ijhydene.2021.06.127
Luo, 2013, Enhanced reversible hydrogen storage properties of a Mg-In-Y ternary solid solution, Int. J. Hydrogen Energy, 38, 10912, 10.1016/j.ijhydene.2013.03.007
Montone, 2007, Nano-micro MgH2-Mg2NiH4 composites: tayloring a multichannel system with selected hydrogen sorption properties, Int. J. Hydrogen Energy, 32, 2926, 10.1016/j.ijhydene.2006.12.021
Yang, 2016, Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg88Y12 binary alloy, Int. J. Hydrogen Energy, 41, 2689, 10.1016/j.ijhydene.2015.12.099
Latroche, 2004, Structural and thermodynamic properties of metallic hydrides used for energy storage, J. Phys. Chem. Solid., 65, 517, 10.1016/j.jpcs.2003.08.037
Liu, 2014, Understanding the role of few-layer graphene nanosheets in enhancing the hydrogen sorption kinetics of magnesium hydride, ACS Appl. Mater. Interfaces, 6, 11038, 10.1021/am502755s
Avrami, 1941, Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys., 9, 177, 10.1063/1.1750872
Kimura, 2013, Hydrogen absorption of catalyzed magnesium below room temperature, Int. J. Hydrogen Energy, 38, 13728, 10.1016/j.ijhydene.2013.08.043
Falahati, 2013, Evaluation of hydrogen sorption models for AB5-type metal alloys by employing a gravimetric technique, Int. J. Hydrogen Energy, 38, 8838, 10.1016/j.ijhydene.2013.04.148