Effect of Volume Fraction of Reinforcement and Milling Time on Physical and Mechanical Properties of Al7075–SiC Composites Fabricated by Powder Metallurgy Method
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Azimi, A. Shokuhfar, and O. Nejadseyfi, “Mechanically alloyed Al7075–TiC nanocomposite: Powder processing, consolidation and mechanical strength,” Mater. Des., 66, Part A, 137–141 (2015).
H. R. Hafizpour and A. Simchi, “Investigation on compressibility of Al–SiC composite powders,” Powder Metall., Vol. 51, No. 3, 217–223 (2008).
M. A. Jabbari Taleghani, E. M. Ruiz Navas, and J. M. Torralba, “Microstructural and mechanical characterization of 7075 aluminum alloy consolidated from a premixed powder by cold compaction and hot extrusion,” Mater. Des., 55, 674–682 (2014).
Y. Jia, F. Cao, Z. Ning, et al., “Influence of second phases on mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy,” Mater. Des., 40, 536–540 (2012).
S. Kamrani, A. Simchi, R. Riedel, and S. M. Seyed Reihani, “Effect of reinforcement volume fraction on mechanical alloying of Al–SiC nanocomposite powders,” Powder Metall., 50, No. 3, 276–282 (2007).
M. A. Mobarhan Bonab and A. Simchi, “Effect of silicon carbide nanoparticles on hot deformation of ultrafine-grained aluminum nanocomposites prepared by hot powder extrusion process,” Powder Metall., 59, No. 4, 262–270 (2016).
Z. G. Wang, C. P. Li, H. Y. Wang, et al., “Effect of nano-SiC content on mechanical properties of SiC/2014Al composites fabricated by powder metallurgy combined with hot extrusion,” Powder Metall., 59, No. 4, 236–241 (2016).
G. B. Schaffer and S. H. Huo, “On development of sintered 7xxx series aluminum alloys,” Powder Metall., Vol. 42, No. 3, 219–226 (1999).
A. A. El-Daly, M. Abdelhameed, M. Hashish, and W. M. Daoush, “Fabrication of silicon carbide reinforced aluminum matrix nanocomposites and characterization of its mechanical properties using nondestructive technique,” Mater. Sci. Eng. A., 559, 384–393 (2013).
M. O. Bodunrin, K. K. Alaneme, and L. H. Chown, “Aluminum matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics,” J. Mater. Res. Technol., No. 4, 434–445 (2015).
R. Senthilkumar, N. Arunkumar, and M. Manzoor Hussian, “A comparative study on low cycle fatigue behavior of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites,” Results Phys., 5, 273–280 (2015).
O. El-Kady and A. Fathy, “Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites,” Mater. Des., 54, 348–353 (2014).
A. Abdollahi, A. Alizadeh, and H. R. Baharvandi, “Dry sliding tribological behavior and mechanical properties of Al2024–5 wt.% B4C nanocomposite produced by mechanical milling and hot extrusion,” Mater. Des., 55, 471–481 (2014).
M. Khademian, A. Alizadeh, and A. Abdollahi, “Fabrication and characterization of hot rolled and hot extruded boron carbide (B4C) reinforced A356 aluminum alloy matrix composites produced by stir casting method,” Trans. Indian Inst. Met., 1–12 (2016).
M. Rahimian, N. Ehsani, N. Parvin, and H. R. Baharvandi, “The effect of sintering temperature and the amount of reinforcement on the properties of Al–Al2O3 composite,” Mater. Des., 30, No. 8, 3333–3337 (2009).
M. Rahimian, N. Ehsani, N. Parvin, and H. R. Baharvandi, “The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy,” J. Mater. Process. Technol., 209, No. 14, 5387–5393 (2009).
S. S. Razavi-Tousi, R. Yazdani-Rad, and S. A. Manafi, “Effect of volume fraction and particle size of alumina reinforcement on compaction and densification behavior of Al–Al2O3 nanocomposites,” Mater. Sci. Eng. A., 528, No. 3, 1105–1110 (2011).
Z. Wei, P. Ma, H. Wang, et al. “The thermal expansion behaviour of SiCp/Al–20Si composites solidified under high pressures,” Mater. Des., 65, 387–394 (2015).
H. Asgharzadeh, “Sintering behavior of nanocrystalline Al6063 powders prepared by high-energy mechanical milling,” Trans. Indian Inst. Met., 69, No. 7, 1359–1368 (2016).
P. Van Trinh, N. Van Luan, P. N. Minh, and D. D. Phuong, “Effect of sintering temperature on properties of CNT/Al composite prepared by capsule-free hot isostatic pressing technique, 69, No. 7, 1–9 (2016).
A. Alizadeh, and E. Taheri-Nassaj, “Mechanical properties and wear behavior of Al–2 wt.% Cu alloy composites reinforced by B4C nanoparticles and fabricated by mechanical milling and hot extrusion,” Mater. Charact., 67, 119–128 (2012).
H. Ghasemi Yazdabadi, A. Ekrami, H. S. Kim, and A. Simchi, “An investigation on the fatigue fracture of P/M Al–SiC nanocomposites,” Metall. Mater. Trans. A., 44, No. 6, 2662–2671 (2013).
C. Suryanarayana, E. Ivanov, and V. V. Boldyrev, “The science and technology of mechanical alloying,” Mater. Sci. Eng. A., 304–306, 151–158 (2001).
D. L. Zhang, “Processing of advanced materials using high-energy mechanical milling,” Prog. Mater. Sci., 79, Nos. 3–4, 537–560 (2004).
H. Simchi and A. Simchi, “Tensile and fatigue fracture of nanometric alumina reinforced copper with bimodal grain size distribution,” Mater. Sci. Eng. A., 507, Nos. 1–2, 200–206 (2009).
F. Chen, Z. Chen, F. Mao, et al., “TiB2 reinforced aluminum based in situ composites fabricated by stir casting,” Mater. Sci. Eng. A., 625, 357–368 (2015).
T. Wang, Z. Chen, Y. Zheng, et al., “Development of TiB2 reinforced aluminum foundry alloy based in situ composites. Part II: Enhancing the practical aluminum foundry alloys using the improved Al–5 wt.% TiB2 master composite upon dilution,” Mater. Sci. Eng. A., 605, 22–32 (2014).
S. Sattari and A. Atrian, “Effects of the deep rolling process on the surface roughness and properties of an Al−3 vol.% SiC nanoparticle nanocomposite fabricated by mechanical milling and hot extrusion,” Int. J. Minerals, Metallurgy, Materials,” 24, Issue 7, 814–825 (2017).