Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của hạt gia cường Carbide Vanadi đến khả năng chống mài mòn của lớp phủ duplex Fe-Co được tạo ra bằng phương pháp phủ laser
Tóm tắt
Trong nghiên cứu này, lớp phủ duplex Fe-Co được gia cường bằng carbide vanadi (VC) đã được chuẩn bị trên nền đồng bằng phương pháp phủ laser. Kết quả thực nghiệm cho thấy không có nứt và độ rỗ trong lớp phủ. Cấu trúc vi mô của lớp dựa trên Co chủ yếu bao gồm các cấu trúc dendrit và eutectic. Các hạt được tinh chế và chuyển đổi từ dendrit thành tinh thể hình khối với sự gia tăng tỷ lệ VC. Đồng thời, độ cứng vi mô và khả năng chống mài mòn của lớp phủ composite tăng đáng kể khi có sự bổ sung VC. Độ cứng vi mô và khả năng chống mài mòn của lớp phủ đạt giá trị tối đa khi bột hợp kim Co được trộn với 15 wt.% VC. Sự cải thiện đáng kể về độ cứng vi mô và khả năng chống mài mòn này đến từ sự hình thành của tăng cường dung dịch rắn, tăng cường tinh thể hạt và tăng cường pha thứ hai. Dựa trên những kết quả thu được, việc tích hợp VC là khả thi để cải thiện khả năng chống mài mòn của các lớp phủ hợp kim dựa trên Co.
Từ khóa
#Fe-Co #lớp phủ duplex #carbide vanadi #khả năng chống mài mòn #tinh thể hạtTài liệu tham khảo
J. Zhou and D. Kong, Friction–Wear Performances and Oxidation Behaviors of Ti3AlC2 Reinforced Co–based Alloy Coatings by Laser Cladding, Surface and Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2020.126816
J. Huang, X. Yan, C. Chang, Y. Xie, W. Ma, R. Huang, R. Zhao, S. Li, M. Liu, and H. Liao, Pure Copper Components Fabricated by Cold Spray (CS) and Selective Laser Melting (SLM) Technology, Surface and Coat. Technol., 2020, 395, p 125936. https://doi.org/10.1016/j.surfcoat.2020.125936
G.-R. Yang, W.-M. Song, J.-J. Lu, Y. Hao, Y.-M. Li, and Y. Ma, Surface Composite Fabrication Using Fe-Based Alloying Powder Through Infiltration Casting Technique on Copper Substrate, Mater. Sci. Eng: A., 2006, 419, p 153-161. https://doi.org/10.1016/j.apsusc.2018.04.260
T. Li, N. Dang, M. Liang, C. Guo, H. Lu, J. Ma, and W. Liang, TEM Observation of General Growth Behavior for Silver Electroplating on Copper rod, Appl Surface Sci., 2018, 451, p 148-154. https://doi.org/10.1016/j.apsusc.2018.04.260
M. Hu, J.-C. Tang, X.-G. Chen, N. Ye, X.-Y. Zhao, and M.-M. Xu, Microstructure and Properties of WC-12Co Composite Coatings Prepared by Laser Cladding, Trans. Nonferrous Metals Soc. China., 2020, 30(4), p 1017-1030. https://doi.org/10.1016/s1003-6326(20)65273-6
K.Y. Luo, X. Xu, Z. Zhao, S.S. Zhao, Z.G. Cheng, and J.Z. Lu, Microstructural Evolution and Characteristics of Bonding Zone in Multilayer Laser Cladding of Fe-Based Coating, J. Mater. Process. Technol., 2019, 263, p 50-58. https://doi.org/10.1016/j.jmatprotec.2018.08.005
C. Yao, J. Huang, P. Zhang, Z. Li, and Y. Wu, Toughening of Fe-Based Laser-Clad Alloy Coating, Appl. Surface Sci., 2011, 257(6), p 2184-2192. https://doi.org/10.1016/j.apsusc.2010.09.070
Y.-Z. Zhang, Y. Tu, M.-Z. Xi, and L.-K. Shi, Characterization on Laser Clad Nickel Based Alloy Coating on Pure Copper, Surf. Coat. Technol., 2008, 202(24), p 5924-5928. https://doi.org/10.1016/j.surfcoat.2008.06.163
E. Fernández, M. Cadenas, R. González, C. Navas, R. Fernández, and Jd. Damborenea, Wear Behaviour of Laser Clad NiCrBSi Coating, Wear., 2005, 259(7–12), p 870-875. https://doi.org/10.1016/j.wear.2005.02.063
S. Guo, Z. Chen, J. Yao, Q. Zhang, D. Cai, and V. Kovalenko, Prediction of Simulating and Experiments for Co-based Alloy Laser Cladding by HPDL, International Federation for Heat Treatment and Surface Engineering Congress 2012 [20th Congress of International Federation for Heat Treatment and Surface Engineering] Proceedings Ed., 23–25, 2012, (Zhejiang Province, China) p 858-863, https://doi.org/10.1016/j.phpro.2013.11.058
A. Hidouci, J.M. Pelletier, F. Ducoin, D. Dezert, and R. El Guerjouma, Microstructural and Mechanical Characteristics of Laser Coatings, Surface and Coat. Technol., 2000, 123, p 17-23. https://doi.org/10.1016/s0257-8972(99)00394-1
H.-M. Guo, Q. Wang, W.-J. Wang, J. Guo, Q.-Y. Liu, and M.-H. Zhu, Investigation on Wear and Damage Performance of Laser Cladding Co-Based Alloy on Single Wheel or Rail Material, Wear., 2015, 328–329, p 329-337. https://doi.org/10.1016/j.wear.2015.03.002
E. Díaz, J.M. Amado, J. Montero, M.J. Tobar, and A. Yáñez, Comparative Study of Co-based Alloys in Repairing Low Cr-Mo steel Components by Laser Cladding, Phys. Procedia., 2012, 39, p 368-375. https://doi.org/10.1016/j.phpro.2012.10.050
F. Wang, H. Mao, D. Zhang, and X. Zhao, The Crack Control During Laser Cladding by Adding the Stainless Steel Net in the Coating, Appl. Surface Sci., 2009, 255(21), p 8846-8854. https://doi.org/10.1016/j.apsusc.2009.06.066
H. Yan, J. Zhang, P. Zhang, Z. Yu, C. Li, P. Xu, and Y. Lu, Laser Cladding of Co-Based Alloy/TiC/CaF2 Self-Lubricating Composite Coatings on Copper for Continuous Casting Mold, Surface and Coat. Technol., 2013, 232, p 362-369. https://doi.org/10.1016/j.surfcoat.2013.05.036
C. Lee, H. Park, J. Yoo, C. Lee, W. Woo, and S. Park, Residual Stress and Crack Initiation in Laser Clad Composite Layer with Co-Based Alloy and WC + NiCr, Appl. Surface Sci., 2015, 345, p 286-294. https://doi.org/10.1016/j.apsusc.2015.03.168
F. Liu, C. Liu, S. Chen, X. Tao, and Y. Zhang, Laser Cladding Ni–Co Duplex Coating on Copper Substrate, Opt. Lasers in Eng., 2010, 48(7–8), p 792-799. https://doi.org/10.1016/j.optlaseng.2010.02.009
S. Chen, J. Liang, C. Liu, K. Sun, and J. Mazumder, Preparation of a Novel Ni/Co-Based Alloy Gradient Coating on Surface of the Crystallizer Copper Alloy by Laser, Appl. Surface Sci., 2011, 258(4), p 1443-1450. https://doi.org/10.1016/j.apsusc.2011.09.101
S. Zhou, J. Lei, Z. Xiong, X. Dai, J. Guo, and Z. Gu, Synthesis of Fep/Cu-Cup/Fe Duplex Composite Coatings by Laser Cladding, Mater. Design., 2016, 97, p 431-436. https://doi.org/10.1016/j.matdes.2016.02.125
P. Xu, Y. Sun, Y. Qiao, and X. Du, Study of Laser Cladding Fe-Co Duplex Coating on Copper Substrate(Article), Mater. Res. Exp., 2020, 7, p 016573. https://doi.org/10.1088/2053-1591/ab6927
P. Fan and G. Zhang, Study on Process Optimization of WC-Co50 Cermet Composite Coating by Laser Cladding, Int. J. Refractory Metals and Hard Mater., 2020, 87, p 105133. https://doi.org/10.1016/j.ijrmhm.2019.105133
G. Zhao, Y. Zou, Z. Zou, and H. Zhang, Research on In Situ Synthesised (Ti, V)C/Fe Composite Coating by Laser Cladding, Mater. Sci. Technol., 2015, 31(11), p 1329-1334. https://doi.org/10.1179/1743284714y.0000000695
C. Wang, S. Zhang, C.H. Zhang, C.L. Wu, J.B. Zhang, and A.O. Abdullah, Phase Evolution and Wear Resistance of In Situ Synthesized V8C7 Particles Reinforced Fe-Based Coating by Laser Cladding, Opt. Laser Technol., 2018, 105, p 58-65. https://doi.org/10.1016/j.optlastec.2018.02.019
J. Wang, C. Li, M. Zeng, Y. Guo, X. Feng, L. Tang, and Y. Wang, Microstructural Evolution and Wear Behaviors of NbC-Reinforced Ti-Based Composite Coating, Int. J. Adv. Manuf. Technol., 2020, 107(5–6), p 2397-2407. https://doi.org/10.1007/s00170-020-05198-w
F. Wang, C. Li, S. Sun, M. Zeng, C. Liu, Q. Lu, and Y. Wang, Al2O3/TiO-Ni-WC Composite Coatings Designed for Enhanced Wear Performance by Laser Cladding Under High-Frequency Micro-Vibration, JOM, 2020, 72(11), p 4060-4068. https://doi.org/10.1007/s11837-020-04322-1
Y. Zhang, P. Xu, C. Liu, J. Ren, and H. Gong, The Influence of Carbides on the Microstructure, Grain Growth, and Oxidation Resistance of Nanostructured Carbides-Strengthened Cobalt-based Multi-Track Laser-Cladding Layers, Appl. Surface Sci., 2019, 469, p 495-504. https://doi.org/10.1016/j.apsusc.2018.11.084
H.F. El-Labban, E.R.I. Mahmoud and H. Al-Wadai, Formation of VC-Composite Surface Layer on High C-Cr Bearing Tool Steel by Laser Surface Cladding, J. Manuf. Process., 2015, 20, p 190-197. https://doi.org/10.1016/j.jmapro.2015.08.004
Y.-B. Cao, S.-X. Zhi, H.-B. Qi, Y. Zhang, C. Qin, and S.-P. Yang, Evolution Behavior of Ex-situ NbC and Properties of Fe-Based Laser Clad Coating, Opt. Laser Technol., 2020, 124, p 105999. https://doi.org/10.1016/j.optlastec.2019.105999
H. Chen, Y. Lu, Y. Sun, Y. Wei, X. Wang, and D. Liu, Coarse TiC Particles Reinforced H13 Steel Matrix Composites Produced by Laser Cladding, Surface and Coat. Technol., 2020, 395, p 125867. https://doi.org/10.1016/j.surfcoat.2020.125867
F. Weng, H. Yu, C. Chen, J. Liu, and L. Zhao, Microstructures and Properties of TiN Reinforced Co-Based Composite Coatings Modified with Y2O3 by Laser claDding on Ti–6Al–4V Alloy, J. Alloys and Compounds., 2015, 650, p 178-184. https://doi.org/10.1016/j.jallcom.2015.07.295
L. Ding, S. Hu, X. Quan, and J. Shen, Effect of Ti on the Microstructure Evolution and Wear Behavior of VN Alloy/Co-Based Composite Coatings by Laser Cladding, J. Mater. Process. Technol., 2018, 252, p 711-719. https://doi.org/10.1016/j.jmatprotec.2017.10.042
L. Ding and S. Hu, Effect of Nano-CeO2 on Microstructure and Wear Resistance of Co-Based Coatings, Surface and Coat. Technol., 2015, 276, p 565-572. https://doi.org/10.1016/j.surfcoat.2015.06.014
Z. Li, M. Wei, K. Xiao, Z. Bai, W. Xue, C. Dong, D. Wei, and X. Li, Microhardness and Wear Resistance of Al2O3-TiB2-TiC Ceramic Coatings on Carbon Steel Fabricated by Laser Cladding(Article), Ceram. Int., 2019, 45(1), p 115-121. https://doi.org/10.1016/j.ceramint.2018.09.140
T. Nghia, Y. Sen, and P. Anh, Microstructure and Properties of Cu/TiB2 Wear Resistance Composite Coating on H13 Steel Prepared by In-situ Laser Cladding, Optics & Laser Technology, 2018, 108, p 480-486. https://doi.org/10.1016/j.optlastec.2018.07.036
W. Zhang, S. Liu, and L. Zou, TiB/Fe金属陶瓷复合涂层原位合成及显微分析 (In-situ Synthesis and Microscopic Analysis of TiB/Fe Metal-Ceramic Composite Coatings), J. Dalian Univ. Technol., 2004 https://doi.org/10.1016/j.matlet.2007.06.036
G. Xu, D. Yin, Z. Hang, L. Chang, R. Fan, and Y. Zhang, 激光熔覆钴基合金与碳化钒的功能梯度层 (Functionally Gradient Material Coating of Co-Based Alloy and VC Using Laser Cladding), Adv. Lasers and Optoelectron., 2012 https://doi.org/10.3788/LOP49.061404
A.A. El-Gendy, T. Almugaiteeb, and E.E. Carpenter, CoxC Nanorod Magnets: Highly Magnetocrystalline Anisotropy with Lower Curie Temperature for Potential Applications(Article), J. Magnetism and Magnetic Mater., 2013, 348, p 136-139. https://doi.org/10.1016/j.jmmm.2013.08.022
Z.J. Huba and E.E. Carpenter, A Versatile Synthetic Approach for the Synthesis of CoO, CoxC, and Co Based Nanocomposites: Tuning Kinetics and Crystal Phase with Different Polyhydric Alcohols, CrystEngComm, 2014, 16(34), p 8000-8007. https://doi.org/10.1039/c4ce00931b
H. Wang, Y. Sun, Y. Qiao, and X. Du, Effect of Ni-Coated WC Reinforced Particles on Microstructure and Mechanical Properties of Laser Cladding Fe-Co Duplex Coating, Opt. Laser Technol., 2021, 142, p 107209. https://doi.org/10.1016/j.optlastec.2021.107209
Q. Wu, W. Li, N. Zhong, W. Gang, and W. Haishan, Microstructure and Wear Behavior of Laser Cladding VC–Cr7C3 Ceramic Coating on Steel Substrate, Mater. Design., 2013, 49, p 10-18. https://doi.org/10.1016/j.matdes.2013.01.067
Y. Gao, Y. Liu, W. Lu, Z. Hu, and Z. Tao, Microstructure Evolution and Wear Resistance of Laser Cladded 316L Stainless Steel Reinforced with in-situ VC-Cr7C3, Surface & Coat. Technol., 2022, 432, p 128264. https://doi.org/10.1016/j.surfcoat.2022.128264