Effect of Treatment Time on the Microstructure of Austenitic Stainless Steel During Low-Temperature Liquid Nitrocarburizing

Jun Wang1, Yuanhua Lin2, Qiang Zhang3, Dezhi Zeng2, Hongyuan Fan1
1School of Manufacturing Science and Engineering, Sichuan University, Chengdu, P.R. China
2State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, P.R. China
3Southwest Oil and Gasfield Company Research Institute of Natural Gas, Chengdu, P.R. China

Tóm tắt

The effect of treatment time on the microstructure of AISI 304 austenitic stainless steel during liquid nitrocarburizing (LNC) at 703 K (430 °C) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Experimental results revealed that the modified layer was covered with the alloy surface and the modified layer depth increased extensively from 2 to 33.4 μm with increasing treatment time. SEM and XRD showed that when the 304 stainless steel sample was subjected to LNC at 703 K (430 °C) for less than 4 hours, the main phase of the modified layer was expanded austenite. When the treatment time was prolonged to 8 hours, the abundant expanded austenite was formed and it partially transformed into CrN and ferrite subsequently. With the increased treatment time, more and more CrN precipitate transformed in the overwhelming majority zone in the form of a typical dendritic structure in the nearby outer part treated for 40 hours. Still there was a single-phase layer of the expanded austenite between the CrN part and the inner substrate. TEM showed the expanded austenite decomposition into the CrN and ferrite after longtime treatment even at low temperature.

Tài liệu tham khảo

H. Dong: Int. Mater. Rev., 2010, vol. 55, pp. 65–98. F. Pedraza, J.L. Grosseau-Poussard, G. Abrasonis, J.P. Rivière, and J.F. Dinhut: Appl. Phys., 2003, vol. 94, pp. 7509–19. T.L. Christiansen and M.A.J. Somers: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 675–82. C. Templier, J.C. Stinville, P.O. Renault, G. Abrasonis, P. Villechaise, J.P. Rivière, and M. Drouet: Scripta Mater., 2010, vol. 63, pp. 496–99. G.M. Michal, X. Gu, W.D. Jennings, H. Kahn, F. Ernst, and A.H. Heuer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1781–90. F. Ernst, A. Avishai, H. Kahn, X. Gu, G.M. Michal, and A.H. Heuer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1768–80. T Bell: Surf. Eng., 2002, vol. 18, pp. 415–22. Liang Wang, Shijun Ji, and Juncai Sun: Surf. Coat. Technol., 2006, vol. 200, pp. 5067–70. R.B. Frandsen, T. Christiansen, and M.A.J. Somers: Surf. Coat. Technol., 2006, vol. 200, pp. 5160–69. Jun Wang, Ji Xiong, Qian Peng, Hongyuan Fan, Ying Wang, Guijiang Li, and Baoluo Shen: Mater. Charact., 2009, vol. 60, pp. 197–203. P. Jacquet, J.B. Coudert, and P. Lourdin: Surf. Coat. Technol., 2011, vol. 205, pp. 4064–67. Hiroyuki Tsujimura, Takuya Goto, and Yasuhiko Ito: J. Alloys Compd., 2004, vol. 376, pp. 246–50. D. Manova, T. Höche, S. Mändl, and H. Neumann: Nucl. Instrum. Methods B, 2009, vol. 267, pp. 1536–39. D.L. Williamson, O. Ozturk, R. Wei, and P.J. Wilbur: Surf. Coat. Technol., 1994, vol. 65, pp. 15–23. R. Wei, J.J. Vajo, J.N. Matossian, P.J. Wilbur, J.A. Davis, D.L. Williamson, and G.A. Collins: Surf. Coat. Technol., 1996, vol. 83, pp. 235–42. Yimin Lin, Jian Lu, Liping Wang, Tao Xu, and Qunji Xue: Acta Mater., 2006, vol. 54, pp. 5599–5605. B. Larisch, U. Brusky, and H.J. Spies: Surf. Coat. Technol., 1999, vols. 116–119, pp. 205–11. Dong-Cherng Wen: Wear, 2010, vol. 268, pp. 629–36. H.Y. Li, D.F. Luo, C.F. Yeung, and K.H. Lau: J. Mater. Process. Technol., 1997, vol. 69, pp. 45–49. J.W. Zhang, L.T. Lu, K. Shiozawa, W.N. Zhou, and W.H. Zhang: Int. J. Fatigue, 2011, vol. 33, pp. 880–86. K. Funatani: Met. Sci. Heat Treatment, 2004, vol. 46, pp. 277–80. G.J. Li, Q. Peng, C. Li, Y. Wang, S. Chen, J. Wang, and B. Shen: Mater. Charact., 2008, vol. 59, pp. 1359–63. G.J. Li, Q. Peng, J. Wang, C. Li, and B.L. Shen: Surf. Coat. Technol., 2008, vol. 202, pp. 2865–70. Y.Z. Shen, K.H. Oh, and D.N. Lee: Scripta Mater., 2005, vol. 53, pp. 1345–49. H. Tsujimura, T. Goto, and Y. Ito: Electrochim. Acta, 2002, vol. 47, pp. 2725–31. A.S. Hamdy, B. Marx, and D. Butt: Mater. Chem. Phys., 2011, vol. 126, pp. 507–14. Jun Wang, Yuanhua Lin, Qiang Zhang, Jin Yan, Dezhi Zen, Runbo Huang, and Hongyuan Fan: Surf. Coat. Technol., 2012, vol. 206, pp. 3399–3404. L. Xia and C. Gao: Nitrid. Steel, 1989, pp. 161–65 (in Chinese). K.H. Jack: Proc. R. Soc. A, 1951, vol. 208, pp. 200–15. X. Xu, L. Wang, Z. Yu, J. Qiang, and Z. Hei: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1193–99. C.E. Foerster, F.C. Serbena, S.L.R. da Silva, C.M. Lepienski, C.J. de M. Siqueira, and M. Ueda: Nucl. Instrum. Methods B, 2007, vol. 257, pp. 732–36. D.R.G. Mitchell, D.J. Attard, G.A. Collins, and K.T. Short: Surf. Coat. Technol., 2003, vol. 165, pp. 107–18. X.L. Xu, L. Wang, Z.W. Yu, and Z.K. Hei: Surf. Coat. Technol., 2002, vol. 132, pp. 270–74. X. Li, M. Samandi, D. Dunne, G. Collins, J. Tendys, K. Short, and R. Hutchings: Surf. Coat. Technol., 1996, vol. 85, pp. 28–36. J. Feugeas, B. Gomez, and A. Craievich: Surf. Coat. Technol., 2002, vol. 154, pp. 167–75. D. Hoeft, B.A. Latella, and K.T Short: J. Phys.: Condens. Mater., 2005, vol. 17, pp. 3547–58.