Tác động của Torrefaction đến quá trình khí hóa hơi của sinh khối trong phản ứng lò khí hóa hai lớp bột - Nghiên cứu mô phỏng quy trình

BioEnergy Research - Tập 12 - Trang 1042-1051 - 2019
Quang-Vu Bach1, Dinh Duc Nguyen2,3, Chul-Jin Lee4
1Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
3Department of Environmental Energy Engineering, Kyonggi University, Suwon 442-760, Republic of Korea
4School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06980, Republic of Korea

Tóm tắt

Trong nghiên cứu này, một quy trình khí hóa hơi được xây dựng với phản ứng lò khí hóa hai lớp bột sử dụng mô phỏng quy trình thương mại và được xác thực bằng dữ liệu thực nghiệm để điều tra hành vi của gỗ vân sam thô và đã torrefied trong quá trình chuyển đổi. Các tác động của torrefaction, nhiệt độ khí hóa và tỷ lệ hơi nước so với sinh khối đối với hiệu suất khí hóa gỗ vân sam được khảo sát. Các chỉ số khí hóa chính bao gồm thành phần khí sản phẩm và giá trị nhiệt, cũng như hiệu suất khí lạnh được nghiên cứu. Kết quả mô phỏng cho thấy cả hàm lượng H2 và CO2 trong khí sản phẩm đều giảm khi tăng nhiệt độ khí hóa hoặc giảm tỷ lệ hơi nước so với sinh khối. Ngược lại, hàm lượng CO lại có xu hướng trái ngược. Hơn nữa, việc tăng nhiệt độ khí hóa hoặc giảm tỷ lệ hơi nước so với sinh khối làm tăng giá trị nhiệt của khí sản phẩm nhưng giảm hiệu suất khí lạnh. So với nguyên liệu thô, gỗ vân sam đã torrefied cung cấp hàm lượng H2 thấp hơn nhưng hàm lượng CO cao hơn trong khí sản phẩm ở cùng điều kiện khí hóa. Tuy nhiên, việc khí hóa gỗ vân sam đã torrefied luôn mang lại giá trị nhiệt khí lạnh và hiệu suất cao hơn so với gỗ vân sam thô. Các giá trị tăng lên đạt tối đa 0.46 MJ/Nm3 cho giá trị nhiệt và 5.96% cho hiệu suất.

Từ khóa

#torrefaction #khí hóa hơi #sinh khối #lò khí hóa hai lớp bột #mô phỏng quy trình

Tài liệu tham khảo

Bhattacharya A, Manna D, Paul B, Datta A (2011) Biomass integrated gasification combined cycle power generation with supplementary biomass firing: energy and exergy based performance analysis. Energy 36:2599–2610 Kumar A, Demirel Y, Jones DD, Hanna MA (2010) Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains. Bioresour Technol 101:3696–3701 Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23:129–152 Swanson RM, Platon A, Satrio JA, Brown RC (2010) Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel 89:S11–S19 Beheshti SM, Ghassemi H, Shahsavan-Markadeh R (2015) Process simulation of biomass gasification in a bubbling fluidized bed reactor. Energy Convers Manag 94:345–352 Parthasarathy P, Narayanan KS (2014) Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield – a review. Renew Energy 66:570–579 Kern S, Pfeifer C, Hofbauer H (2013) Gasification of wood in a dual fluidized bed gasifier: influence of fuel feeding on process performance. Chem Eng Sci 90:284–298 Corella J, Toledo JM, Molina G (2007) A review on dual fluidized-bed biomass gasifiers. Ind Eng Chem Res 46:6831–6839 Li YH, Chen Z, Watkinson P, Bi X, Grace J, Lim CJ, Ellis N (2018) A novel dual-bed for steam gasification of biomass. Biomass Convers Biorefinery 8:357–367 Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefaction. Energy 31:3458–3470 Vélez JF, Chejne F, Valdés CF, Emery EJ, Londoño CA (2009) Co-gasification of Colombian coal and biomass in fluidized bed: an experimental study. Fuel 88:424–430 Aigner I, Pfeifer C, Hofbauer H (2011) Co-gasification of coal and wood in a dual fluidized bed gasifier. Fuel 90:2404–2412 Saw WL, Pang S (2013) Co-gasification of blended lignite and wood pellets in a 100 kW dual fluidised bed steam gasifier: the influence of lignite ratio on producer gas composition and tar content. Fuel 112:117–124 Ciolkosz D, Wallace R (2011) A review of torrefaction for bioenergy feedstock production, Biofuels. Bioproducts Biorefining 5:317–329 Chen W-H, Lin B-J, Huang M-Y, Chang J-S (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol 184:314–327 van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:3748–3762 Di Marcello M, Tsalidis GA, Spinelli G, de Jong W, Kiel JHA (2017) Pilot scale steam-oxygen CFB gasification of commercial torrefied wood pellets. The effect of torrefaction on the gasification performance. Biomass Bioenergy 105:411–420 Tsalidis GA, Di Marcello M, Spinelli G, de Jong W, Kiel JHA (2017) The effect of torrefaction on the process performance of oxygen-steam blown CFB gasification of hardwood and softwood. Biomass Bioenergy 106:155–165 Bach Q-V, Chen W-H, Sheen H-K, Chang J-S (2017) Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide. Bioresour Technol 244:1393–1399 Chen W-H, Chen C-J, Hung C-I, Shen C-H, Hsu H-W (2013) A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor. Appl Energy 112:421–430 Kuo P-C, Wu W, Chen W-H (2014) Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel 117:1231–1241 Tapasvi D, Kempegowda RS, Tran K-Q, Skreiberg Ø, Grønli M (2015) A simulation study on the torrefied biomass gasification. Energy Convers Manag 90:446–457 Ku X, Lin J, Yuan F (2016) Influence of torrefaction on biomass gasification performance in a high-temperature entrained-flow reactor. Energy Fuel 30:4053–4064 Ku X, Jin H, Lin J (2017) Comparison of gasification performances between raw and torrefied biomasses in an air-blown fluidized-bed gasifier. Chem Eng Sci 168:235–249 Tapasvi D, Khalil R, Skreiberg Ø, Tran K-Q, Grønli M (2012) Torrefaction of Norwegian birch and spruce: an experimental study using macro-TGA. Energy Fuel 26:5232–5240 Schmid JC, Wolfesberger U, Koppatz S, Pfeifer C, Hofbauer H (2012) Variation of feedstock in a dual fluidized bed steam gasifier—influence on product gas, tar content, and composition. Environ Prog Sustain Energy 31:205–215 Fernandez-Lopez M, Pedroche J, Valverde JL, Sanchez-Silva L (2017) Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®. Energy Convers Manag 140:211–217 Doherty W, Reynolds A, Kennedy D (2009) The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass Bioenergy 33:1158–1167 Blok K, Nieuwlaar E (2016) Introduction to Energy Analysis, 2nd edn. Routledge, London Xie J, Zhong W, Jin B, Shao Y, Huang Y (2013) Eulerian–Lagrangian method for three-dimensional simulation of fluidized bed coal gasification. Adv Powder Technol 24:382–392 Umeki K, Yamamoto K, Namioka T, Yoshikawa K (2010) High temperature steam-only gasification of woody biomass. Appl Energy 87:791–798 Formica M, Frigo S, Gabbrielli R (2016) Development of a new steady state zero-dimensional simulation model for woody biomass gasification in a full scale plant. Energy Convers Manag 120:358–369 Pala LPR, Wang Q, Kolb G, Hessel V (2017) Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: an Aspen Plus model. Renew Energy 101:484–492 Cheng Y, Thow Z, Wang C-H (2016) Biomass gasification with CO2 in a fluidized bed. Powder Technol 296:87–101 Gao N, Li A, Quan C, Gao F (2008) Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. Int J Hydrog Energy 33:5430–5438 Doherty W, Reynolds A, Kennedy D (2015) Process simulation of biomass gasification integrated with a solid oxide fuel cell stack. J Power Sources 277:292–303 Pfeifer C, Rauch R, Hofbauer H (2004) In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind Eng Chem Res 43:1634–1640 Koppatz S, Pfeifer C, Rauch R, Hofbauer H, Marquard-Moellenstedt T, Specht M (2009) H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input. Fuel Process Technol 90:914–921 Prestipino M, Chiodo V, Maisano S, Zafarana G, Urbani F, Galvagno A (2017) Hydrogen rich syngas production by air-steam gasification of citrus peel residues from citrus juice manufacturing: experimental and simulation activities. Int J Hydrog Energy 42:26816–26827 Dong J, Nzihou A, Chi Y, Weiss-Hortala E, Ni M, Lyczko N, Tang Y, Ducousso M (2017) Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO. Waste Biomass Valoriz 8:2735–2746 Gao N, Li A, Quan C (2009) A novel reforming method for hydrogen production from biomass steam gasification. Bioresour Technol 100:4271–4277 Xiao Y, Xu S, Song Y, Shan Y, Wang C, Wang G (2017) Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system. Fuel Process Technol 165:54–61 Rupesh S, Muraleedharan C, Arun P (2016) ASPEN plus modelling of air–steam gasification of biomass with sorbent enabled CO2 capture. Resour-Effic Technol 2:94–103 Prasad BVRK, Kuester JL (1988) Process analysis of a dual fluidized bed biomass gasification system. Ind Eng Chem Res 27:304–310 Franco C, Pinto F, Gulyurtlu I, Cabrita I (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82:835–842 Li Y-H, Chen H-H (2018) Analysis of syngas production rate in empty fruit bunch steam gasification with varying control factors. Int J Hydrog Energy 43:667–675