Effect of Temperature on the Oxidation Behavior of Al and Ti in Inconel® 718 Alloy by ESR Slag with Different Amounts of CaO
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Hasanbeigi, W. Morrow, J. Sathaye, E. Masanet, and T. Xu, Energy 50, 315 https://doi.org/10.1016/j.energy.2012.10.062 (2013).
B. Hernandez-Morales, and A. Mitchell, Ironmak. Steelmak. 26, 423 https://doi.org/10.1179/030192399677275 (2013).
L.K. Liang, H. Yang, and Z.W. Guo, J. Northeast Univ. Technol. 14, 171. (1993).
S. Siitonen, M. Tuomaala, and P. Ahtila, Energy Policy 38, 2477 https://doi.org/10.1016/j.enpol.2009.12.042 (2010).
Z.B. Li, Electroslag Metallurgy Theory and Practice (Metallurgical Industry Press, Beijing, 2010), pp 79–149.
K. Narita, T. Onoye, T. Ishii, and T. Kusamichi, Tetsu-to-Hagane 64, 1568 https://doi.org/10.2355/tetsutohagane1955.64.10_1568 (1978).
Y. Dong, Z. Jiang, Y. Cao, D. Hou, L. Liang, and J. Duan, ISIJ Int. 55, 904 https://doi.org/10.2355/isijinternational.55.904 (2015).
Z.H. Jiang, and X.W. Jiang, J. Northeast Inst. Technol. 12, 188. (1991).
H. Shvei and S. Mista, The Experience of the “Huta Beldon” Steel Mill in Electroslag Remelting, ed. B.I. Medovar and G.A. Boyko (Springer New York, New York, NY, 1991), p. 197.
A.B. Pokrovski, G.A. Hasin, V.I. Lazarev, L.A. Hrustalkov, V.A. Pozdnyakov, and B.M. Kukartsev, New Developments in Electroslag Remelting at the Zlatoust Metallurgical Plant, ed. B.I. Medovar and G.A. Boyko (Springer New York, New York, NY, 1991), p. 79.
Z.S. Yu, J.X. Zhang, Y. Yuan, R.C. Zhou, H.J. Zhang, and H.Z. Wang, Mater. Sci. Eng: A 634, 55 https://doi.org/10.1016/j.msea.2015.03.004 (2015).
S.H. Fu, J.X. Dong, M.C. Zhang, and X.S. Xie, Mater. Sci. Eng: A 499, 215 https://doi.org/10.1016/j.msea.2007.11.115 (2009).
A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado, J. Mater. Process. Technol. 177, 469 https://doi.org/10.1016/j.jmatprotec.2006.04.072 (2006).
J.P. Collier, S.H. Wong, J.K. Tien, and J.C. Phillips, Metall. Trans. A 19, 1657 https://doi.org/10.1007/bf02645133 (1988).
Y.C. Liu, Q.Y. Guo, C. Li, Y.P. Mei, X.S. Zhou, Y. Huang, and H.J. Li, Acta Metall. Sin. 52, 1259 https://doi.org/10.11900/0412.1961.2016.00290 (2016).
F. Reyes-Carmona, and A. Mitchell, ISIJ Int. 32, 529 https://doi.org/10.2355/isijinternational.32.529 (1992).
S. Li, G. Cheng, Z. Miao, L. Chen, C. Li, and X. Jiang, ISIJ Int. 57, 2148 https://doi.org/10.2355/isijinternational.ISIJINT-2017-227 (2017).
D. Hou, F.-B. Liu, T.-P. Qu, Z.-H. Jiang, D.-Y. Wang, and Y.-W. Dong, ISIJ Int. 58, 876 https://doi.org/10.2355/isijinternational.ISIJINT-2017-687 (2018).
R. Jiang, Y.D. Song, and P.A. Reed, Int. J. Fatigue 141, 105887 https://doi.org/10.1016/j.ijfatigue.2020.105887 (2020).
C. Marquez, G. L’esperance, and A. Koul, Int. J. Powder Metall. 25, 301. (1989).
R.V. Miner, and R.L. Dreshfield, Metall. Trans. A 12, 261 https://doi.org/10.1007/BF02655199 (1981).
S.F. Yang, S.L. Yang, J.L. Qu, J.H. Du, Y. Gu, P. Zhao, and N. Wang, J. Iron Steel Res. Int. 28, 921 https://doi.org/10.1007/s42243-021-00617-y (2021).
J. Wang, L. Zhang, T. Wen, Y. Ren, and W. Yang, Metall. Mater. Trans. B 52, 1521 https://doi.org/10.1007/s11663-021-02120-x (2021).
Y.F. Qi, J. Li, C.B. Shi, R.M. Geng, and J. Zhang, ISIJ Int. 58, 1275 https://doi.org/10.2355/isijinternational.ISIJINT-2018-003 (2018).
C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng, Int. J. Miner. Metall. Mater. 28, 18 https://doi.org/10.1007/s12613-020-2075-3 (2021).
G. Pateisky, H. Biele, and H.J. Fleischer, J. Vac. Sci. Technol. 9, 1318 https://doi.org/10.1116/1.1317029 (1972).
C.X. Chen, Y. Wang, J. Fu, and E.P. Chen, Acta Metall. Sin. 17, 50. (1981).
Z. Jiang, D. Hou, Y.-W. Dong, Y.-L. Cao, H.-B. Cao, and W. Gong, Metall. Mater. Trans. B 47, 1465 https://doi.org/10.1007/s11663-015-0530-8 (2016).
D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao, ISIJ Int. 57, 1410. https://doi.org/10.2355/isijinternational.ISIJINT-2017-148 (2017).
D. Hou, Z. Jiang, Y. Dong, Y. Cao, H. Cao, and W. Gong, Ironmak. Steelmak. 43, 517 https://doi.org/10.1080/03019233.2015.1110920 (2016).
J.G. Yang, and J.H. Park, Metall. Mater. Trans. B 48, 2147 https://doi.org/10.1007/s11663-017-0994-9 (2017).
S. Duan, X. Shi, M. Mao, W. Yang, S. Han, H. Guo, and J. Guo, Sci. Rep. 8, 5232 https://doi.org/10.1038/s41598-018-23556-3 (2018).
S.C. Duan, X. Shi, F. Wang, M.C. Zhang, Y. Sun, H.J. Guo, and J. Guo, Metall. Mater. Trans. B 50, 3055 https://doi.org/10.1007/s11663-019-01665-2 (2019).
L. Peng, Z. Jiang, and X. Geng, Calphad 70, 101782 https://doi.org/10.1016/j.calphad.2020.101782 (2020).
D. Hou, D. Wang, Z. Jiang, T. Qu, and H. Wang, J. Sustain. Metall. 6, 463 https://doi.org/10.1007/s40831-020-00287-2 (2020).
D. Hou, Z.-H. Jiang, Y.-W. Dong, Y. Li, W. Gong, and F.-B. Liu, Metall. Mater. Trans. B 48, 1885 https://doi.org/10.1007/s11663-017-0921-0 (2017).
S.C. Duan, X. Shi, M.C. Zhang, B. Li, W.S. Yang, F. Wang, H.J. Guo, and J. Guo, Metall. Mater. Trans. B 51, 353 https://doi.org/10.1007/s11663-019-01729-3 (2020).
D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao, ISIJ Int. 57, 1400 https://doi.org/10.2355/isijinternational.ISIJINT-2017-147 (2017).
X. Yang, C. Shi, M. Zhang, and J. Zhang, Steel Res. Int. 83, 244 https://doi.org/10.1002/srin.201100233 (2012).
E.T. Turkdogan, Physical Chemistry of High Temperature Technology (Academic Press, New York, 1980), pp 5–24.
C. Wagner, Thermodynamics of Alloys (Addison-Wesley Press, Cambridge, 1952), pp 47–51.
M.E. Fraser, and A. Mitchell, Ironmak. Steelmak. 3, 279. (1976).
G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter, Metall. Trans. A 20, 2149. https://doi.org/10.1007/BF02650300 (1989).