Effect of Surfactants on Shape of Gold Nanoparticles

High Energy Chemistry - Tập 54 - Trang 308-315 - 2020
M. G. Spirin1,2, S. B. Brichkin1,2, E. S. Yushkov3, V. F. Razumov1,2,4
1Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
2Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
3National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
4Moscow State University, Moscow, Russia

Tóm tắt

In a binary mixture of cetyltrimethylammonium bromide (CTAB) and benzyldimethyltetradecyl ammonium chloride (BDTAC), gold nanorods with a maximum absorption of longitudinal plasmon resonance up to 1600 nm have been obtained. It has been shown that the shape of the growing nanoparticles is determined by the CTAB/BDTAC molar ratio. The optimal conditions have been found for the synthesis of homogeneous nanorods with an aspect ratio of 1 : 7 in a high yield, providing their rapid formation with subsequent slow and uniform growth. The use of a CTAB/BDTAC mixture allows preventing the change in particle shape due to recrystallization during their long-term storage, as is observed in the presence of CTAB.

Tài liệu tham khảo

Foss, C.A., Hornyak, G.L., Stockert, J.A., and Martin, C.R., J. Phys. Chem., 1994, vol. 98, p. 2963. Yu, Y.-Y., Chang, S.-S., Lee, C.-L., and Wang, C.R.C., J. Phys. Chem. B, 1997, p. 6661. Nikoobakht, B. and El-Sayed, M.A., J. Phys. Chem. A, 2003, vol. 107, p. 3372. Li, X., Kao, F.-J., Chuang, C.-C., and He, S., Opt. Express, 2010, vol. 18, no. 11, p. 11 335. Berkovitch, N., Ginzburg, P., and Orenstein, M., J. Phys.: Condens. Matter, 2012, vol. 24, p. 073 202. Pan, S.L., Chen, M., and Li, H.L., Colloids Surf., A, 2001, vol. 180, nos. 1–2, p. 55. Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A., Chem. Rev., 2005, vol. 105, no. 4, p. 1025. Spirin, M.G., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2010, vol. 44, no. 1, p. 52. Jana, N.R., Gearheart, L., and Murphy, C.J., J. Phys. Chem. B, 2001, vol. 105, no. 19, p. 4065. Gao, J., Bender, C.M., and Murphy, C.J., Langmuir, 2003, vol. 19, no. 21, p. 9065. Jana, N.R., Gearheart, L., and Murphy, C.J., Adv. Mater., 2001, vol. 13, no. 18, p. 1389. Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E., and Li, T., J. Phys. Chem. B, 2005, vol. 109, no. 29, p. 13 857. Altansukh, B., Yao, J.-Xi., and Wang, D., J. Nanosci. Nanotechnol., 2008, vol. 8, p. 1. Iqbal, M. and Tae, G., J. Nanosci. Nanotechnol., 2006, vol. 6, no. 11, p. 3355. Zweifel, D.A. and Wei, A., Chem. Mater., 2005, vol. 17, no. 16, p. 4256. Nikoobakht, B. and El-Sayed, M.A., Chem. Mater., 2003, vol. 15, no. 10, p. 1957. Ndokoye, P., Li, X., Zhao, Q., Li, T., Tade, M.O., and Liu, S., J. Colloid Interface Sci., 2016, vol. 462, p. 341. Sharma, V., Park, K., and Srinivasarao, M., Mater. Sci. Eng. R, 2009, vol. 65, p. 1. Li, M., Wei, L., Zhang, X., and Yu, X.-F., Chin. J. Chem. Phys., 2008, vol. 21, p. 476. Iqbal, M., Chung, Y.-I., and Tae, G., J. Mater. Chem., 2007, vol. 17, no. 4, p. 335. Fan, T. and Wall, G., J. Pharm. Sci., 1993, vol. 82, p. 1172. Rivera, A. and Farías, T., Microporous Mesoporous Mater., 2005, vol. 80, p. 337. Farías, T., de Ménorval, L.C., Zajac, J., and Rivera, A., Colloids Surf., A, 2009, vol. 345, p. 51. Velikov, A.A., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 7, p. 1166. Ozdil, Z.C.C., Spalla, O., Menguy, N., and Testard, F., J. Phys. Chem. C, 2019, vol. 123, p. 25 320. Wang, D.-S. and Kerker, M., Phys. Rev. B, 1981, vol. 24, p. 1777. Chang, S.-S., Shih, C.-W., Chen, C.-D., Lai, W.-C., and Wang, C.R.C., Langmuir, 1999, vol. 15, p. 701. Van der Zande, B.M.I., Bohmer, M.R., Fokkink, L.G.J., and Schönenberger, C., J. Phys. Chem. B, 1997, vol. 101, p. 852. Johnson, C.J., Dujardin, E., Davis, S.A., Murphy, C.J., and Mann, S., J. Mater. Chem., 2002, vol. 12, p. 1765. Ishizuka, H., Tano, T., Torigoe, K., Esumi, K., and Meguro, K., Colloids Surf., 1992, vol. 63, p. 337. Liu, M. and Guyot-Sionnest, P., J. Phys. Chem. B, 2005, vol. 109, p. 22 192.