Effect of Solidification Time on Microstructure, Wettability, and Corrosion Properties of A205-T7 Aluminum Alloys

International Journal of Metalcasting - Tập 15 Số 1 - Trang 2-12 - 2021
Amir Kordijazi1, David Weiss2, Sourav Das3, Swaroop Behera4, Hathibelagal M. Roshan4, Pradeep K. Rohatgi4
1Department of Industrial and Manufacturing Engineering, University of Wisconsin–Milwaukee, Milwaukee, USA
2Eck Industries, Inc. Manitowoc, Manitowoc, USA
3Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, USA
4Department of Material Science and Engineering, University of Wisconsin Milwaukee, Milwaukee, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

M.B. Djurdjević, Z. Odanović, J. Pavlović-Krstić, Melt quality control at aluminum casting plants. Metall. Mater. Eng. 16(1), 63–76 (2010)

O.N. Senkov, A.P. Druschitz, S.V. Senkova, K.L. Kendig, J. Griffin, Ultra-high strength sand castings from aluminum alloy 7042, in Shape Casting (Wiley, London, 2011), pp. 199–206

G. García-García, J. Espinoza-Cuadra, H. Mancha-Molinar, Copper content and cooling rate effects over second phase particles behavior in industrial aluminum–silicon alloy 319. Mater. Des. 28(2), 428–433 (2007)

J.-H. Cho, S.H. Han, C.G. Lee, Cooling effect on microstructure and mechanical properties during friction stir welding of Al–Mg–Si aluminum alloys. Mater. Lett. 180, 157–161 (2016). https://doi.org/10.1016/j.matlet.2016.05.157

G. Quan, L. Ren, M. Zhou, 2.13 Solutionizing and Age Hardening of Aluminum Alloys, Comprehensive materials finishing (Elsevier, Amsterdam, 2017)

L.Y. Zhang et al., Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy. J. Mater. Process. Technol. 207(1–3), 107–111 (2008)

AA Registration Record Pink Sheets, ISSN: 2377-6722, Footnote 13, Aluminum Association, Oct-2018

AMS D Nonferrous Alloys Committee, Cast Aluminum alloy composite 4.6Cu–3.4Ti–1.4B–0.75Ag–0.27Mg (205.0/TiB2/3p-T7P) investment cast, solution and precipitation heat treated, SAE International (2014)

J.R. Davis, J.R.D. Associates, A.I.H. Committee, Aluminum and Aluminum Alloys. ASM International(1993)

R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)

A. Kordijazi, Optimization of Ni–P–Zn electroless bath and investigation of corrosion resistance of as-plated coatings. Mater. Res. Express 6(9), 096565 (2019)

A. Kordijazi, Electrochemical characteristics of an optimized Ni-P-Zn electroless composite coating. Adv. Mater. Res. 1043, 124–128 (2014)

V. Hejazi, Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials (2014)

J.-Y. Shiu, C.-W. Kuo, P. Chen, C.-Y. Mou, Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem. Mater. 16(4), 561–564 (2004)

R. Ramachandran, M. Nosonovsky, Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant. Phys. Chem. Chem. Phys. 17(38), 24988–24997 (2015)

A. Kordijazi, S.K. Behera, O. Akbarzadeh, M. Povolo, P. Rohatgi, A statistical analysis to study the effect of silicon content, surface roughness, droplet size and elapsed time on wettability of hypoeutectic cast aluminum–silicon alloys, in Light Metals 2020 (Springer, Berlin, 2020), pp. 185–193

S. Das, A. Kordijazi, O. Akbarzadeh, P.K. Rohatgi, An innovative process for dispersion of graphene nanoparticles and nickel spheres in A356 alloy using pressure infiltration technique, Eng. Rep., p. e12110

T. Hashimoto, X. Zhang, X. Zhou, P. Skeldon, S.J. Haigh, G.E. Thompson, Investigation of dealloying of S phase (Al2CuMg) in AA 2024–T3 aluminium alloy using high resolution 2D and 3D electron imaging. Corros. Sci. 103, 157–164 (2016)

K.L. Tee, L. Lu, M.O. Lai, Synthesis of in situ Al–TiB2 composites using stir cast route. Compos. Struct. 47(1–4), 589–593 (1999)

I.G. Davies, J.M. Dennis, A. Hellawell, The nucleation of aluminum grains in alloys of aluminum with titanium and boron. Metall. Trans. 1(1), 275–280 (1970)

P. Sahoo, M.J. Koczak, Microstructure-property relationships of in situ reacted TiC/Al–Cu metal matrix composites. Mater. Sci. Eng. A 131(1), 69–76 (1991). https://doi.org/10.1016/0921-5093(91)90345-N

B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, vol. 3 (Prentice Hall, New Jersey, 2001)

R. Wiedemann, H. Oettel, M. Jerenz, Structure of deposited and annealed TiB2 layers. Surf. Coat. Technol. 97(1–3), 313–321 (1997)

C.E. Lyman, M.J. Carr, Identification of Unknowns. Electron Diffr. Tech. 2, 373–417 (1992)

D.C. Montgomery, G.C. Runger, Applied statistics and probability for engineers (Wiley, London, 2010)

A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

X.-M. Li, D. Reinhoudt, M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36(8), 1350–1368 (2007). https://doi.org/10.1039/B602486F

S.D. Cramer, B.S. Covino, ASM Handbook Volume 13 Corrosion, ASM Int. Handb. Comm. (1992)

D.R. Lide, CRC Handbook of Chemistry and Physics, 85th edn. (CRC Press, Boca Raton, 2004)

P. Doig, J.W. Edington, The influence of solute depleted zones on the stress-corrosion susceptibility of aged Al–7.2 mass% Mg and Al–4.4 mass% Cu alloys. Proc. R. Soc. Lond. Math. Phys. Sci. 339(1616), 37–47 (1974)

A. Garner, D. Tromans, Direct Observation of Intergranular Corrosion in AI-4 Wt% Cu Alloy. CORROSION 35(2), 55–60 (1979). https://doi.org/10.5006/0010-9312-35.2.55

K. Urushino, K. Sugimoto, Stress-corrosion cracking of aged Al–Cu–Mg alloys in NaCl solution. Corros. Sci. 19(4), 225–236 (1979)

T.D. Burleigh, The postulated mechanisms for stress corrosion cracking of aluminum alloys: A review of the literature 1980–1989. Corrosion 47(2), 89–98 (1991)