Effect of SiC nano-size fillers on the aging resistance of XLPE insulation: A first-principles study
Tài liệu tham khảo
Beldjilali, 2016, Space charge modeling in polymers: review of external applied constraints effects, IEEE Trans. Dielectr. Electr. Insul., 23, 573, 10.1109/TDEI.2015.005004
He, 2016, Space charge characteristics of power cables under AC stress and temperature gradients, IEEE Trans. Dielectr. Electr. Insul., 23, 2404, 10.1109/TDEI.2016.7556519
Lan, 2014, Effect of temperature on space charge trapping and conduction in cross-linked polyethylene, IEEE Trans. Dielectr. Electr. Insul., 21, 1784, 10.1109/TDEI.2014.004261
Chen, 2009, Electrical treeing characteristics in XLPE power cable insulation in frequency range between 20 and 500 Hz, IEEE Trans. Dielectr. Electr. Insul., 16, 179, 10.1109/TDEI.2009.4784566
Ying, 2013, Electrical tree initiation in XLPE cable insulation by application of DC and impulse voltage, IEEE Trans. Dielectr. Electr. Insul., 20, 1691, 10.1109/TDEI.2013.6633699
Zhang, 2014, Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites, IEEE Trans. Dielectr. Electr. Insul., 21, 424, 10.1109/TDEI.2013.004145
Tanaka, 2009, In Tree initiation and growth in LDPE/MgO nanocomposites and roles of nano fillers, 646
Alapati, 2012, Influence of nano-fillers on electrical treeing in epoxy insulation, IET Sci. Meas. Technol., 6, 21, 10.1049/iet-smt.2011.0046
Toselli, 2014, Thermo-oxidative resistance of crosslinked polyethylene (XLPE) coated by hybrid coatings containing graphene oxide, Surf. Coat. Technol., 258, 503, 10.1016/j.surfcoat.2014.08.049
Huang, 2011, A review of dielectric polymer composites with high thermal conductivity, IEEE Electr. Insul. Mag., 27, 8, 10.1109/MEI.2011.5954064
Park, 2014, DC conduction and breakdown characteristics of Al2O3/cross-linked polyethylene nanocomposites for high voltage direct current transmission cable insulation, Jpn. J. Appl. Phys., 53, 10.7567/JJAP.53.08NL05
Tanaka, 2005, Proposal of a multi-core model for polymer nanocomposite dielectrics, IEEE Trans. Dielectr. Electr. Insul., 12, 669, 10.1109/TDEI.2005.1511092
Chelnokov, 1997, High temperature electronics using SiC: actual situation and unsolved problems, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 46, 248, 10.1016/S0921-5107(96)01990-3
Porter, 1995, A critical review of ohmic and rectifying contacts for silicon carbide, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 34, 83, 10.1016/0921-5107(95)01276-1
Capano, 2013, Silicon carbide electronic materials and devices, MRS Bull., 22, 19, 10.1557/S0883769400032711
Nelson, 2004, In Role of the interface in determining the dielectric properties of nanocomposites, 314
Tanaka, 2005, Proposal of a multi-core model for polymer nanocomposite dielectrics, IEEE Trans. Dielectr. Electr. Insul., 12, 669, 10.1109/TDEI.2005.1511092
Han, 2015, QM/MD simulations on the role of SiO2 in polymeric insulation materials, RSC Adv., 6, 555, 10.1039/C5RA19512H
Zheng, 2018, Electrical tree inhibition by SiO2/XLPE nanocomposites: insights from first-principles calculations, J. Mol. Model., 24, 200, 10.1007/s00894-018-3742-4
Song, 2018, A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation, R. Soc. Open Sci., 5
Kresse, 1994, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys. Condens. Matter, 6, 8245, 10.1088/0953-8984/6/40/015
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495
Bader, 1996, Atoms in molecules: a quantum theory, J. Mol. Struct.: THEOCHEM, 360, 1
Henkelman, 2000, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys., 113, 9978, 10.1063/1.1323224
Henkelman, 2000, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys., 113, 9901, 10.1063/1.1329672
Wu, 2005, Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.026102
Baumeier, 2008, First-principles investigation of the atomic and electronic structure of the 4H-SiC(1(1)over-bar02)-c(2X2) surface, Phys. Rev. B, 78, 245318, 10.1103/PhysRevB.78.245318
Rossi, 2008, Ultraviolet photoluminescence from 6H silicon carbide nanoparticles, Appl. Phys. Lett., 92, 2013, 10.1063/1.2950084
Olander, 2001, Influence of adsorbed species on the reconstruction of 4H−SiC(0001) surfaces, J. Phys. Chem. B, 105, 7619, 10.1021/jp010499z
Pollmann, 1997, Atomic and electronic structure of SiC surfaces from ab-initio calculations, Phys. Status Solidi, 202, 421, 10.1002/1521-3951(199707)202:1<421::AID-PSSB421>3.0.CO;2-D
Halicioglu, 1996, Multilayer relaxation features on (100) and (111) surfaces of β-SiC, Thin Solid Films, 286, 184, 10.1016/S0040-6090(96)08539-2
Wenzien, 1995, Vacancy-induced 2 × 2 reconstruction of the Si-terminated 3C SiC(111) surface: ab initio calculations of the atomic and electronic structure, Surf. Sci., 331, 1105, 10.1016/0039-6028(95)00287-1