Effect of Shoe Outsole Wear on Friction during Dry and Wet Slips: A Multiscale Experimental and Computational Study

Multiscale Science and Engineering - Tập 5 Số 1-2 - Trang 62-76 - 2023
Shubham Gupta1, Subhodip Chatterjee1, Ayush Malviya1, Amit Kundu2, Arnab Chanda3
1Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
2Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Prayagraj, India
3Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, 110016, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

2017 Liberty mutual workplace safety index. n.d

K.E. Beschorner, Y. Li, T. Yamaguchi, W. Ells, R. Bowman, The future of footwear friction, in Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): methods approaches, vol. 5, (Springer, Cham, 2021), pp.841–55. https://doi.org/10.1007/978-3-030-74614-8_103

J.L. Bell, J.W. Collins, L. Wolf, R. Gronqvist, S. Chiou, W.R. Chang et al., Evaluation of a comprehensive slip, trip and fall prevention programme for hospital employees. Ergonomics 51, 1906–1925 (2009). https://doi.org/10.1080/00140130802248092

S. Di Pilla, Slip, trip, and fall prevention : a practical handbook, 2nd edn. (CRC Press, Boca Raton, 2016). https://doi.org/10.1201/9781420082364

W.P. Berg, H.M. Alessio, E.M. Mills, C. Tong, Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 26, 261–268 (1997). https://doi.org/10.1093/AGEING/26.4.261

P.K. Sharma, C.H. Bunker, T. Singh, E. Ganguly, P.S. Reddy, A.B. Newman et al., Burden and correlates of falls among rural elders of south india: mobility and independent living in elders study. Curr. Gerontol. Geriatr. Res. (2017). https://doi.org/10.1155/2017/1290936

A. Sirohi, R. Kaur, A.K. Goswami, K. Mani, B. Nongkynrih, S.K. Gupta, A study of falls among elderly persons in a rural area of Haryana. Indian J. Public Health 61, 99–104 (2017). https://doi.org/10.4103/IJPH.IJPH_102_16

A. Joseph, D. Kumar, M. Bagavandas, A review of epidemiology of fall among elderly in India. Indian J Community Med 44, 166 (2019). https://doi.org/10.4103/IJCM.IJCM_201_18

P. Pitchai, H.B. Dedhia, N. Bhandari, D. Krishnan, N.R.J. D’Souza, J.M. Bellara, Prevalence, risk factors, circumstances for falls and level of functional independence among geriatric population-A descriptive study. Indian J. Public Health 63, 21 (2019). https://doi.org/10.4103/IJPH.IJPH_332_17

H. Bhatt, P. Sharma, Slip, trip and falls among women of different age groups: a case study from the northern hills of India. J. Appl. Nat. Sci. 9, 614–620 (2017)

(WHO) (2022) WHO. Falls n.d. https://www.who.int/news-room/fact-sheets/detail/falls (accessed Aug 17, 2022)

S. Chatterjee, S. Gupta, A. Chanda, Barefoot slip risk assessment of Indian manufactured ceramic flooring tiles. Mater Today Proc (2022). https://doi.org/10.1016/J.MATPR.2022.04.428

S. Chatterjee, A. Chanda, Development of a tribofidelic human heel surrogate for barefoot slip testing. J Bionic Eng 19, 429–439 (2022). https://doi.org/10.1007/S42235-021-00138-0

S. Gupta, S. Chatterjee, A. Chanda, Effect of footwear material wear on slips and falls. Mater Today Proc. (2022). https://doi.org/10.1016/J.MATPR.2022.04.313

W.R. Chang, R. Grönqvist, S. Leclercq, R. Myung, L. Makkonen, L. Strandberg et al., The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions. Ergonomics 44, 1217–1232 (2001). https://doi.org/10.1080/00140130110085574

M.S. Redfern, R. Cham, K. Gielo-Perczak, R. Grönqvist, M. Hirvonen, H. Lanshammar et al., Biomechanics of slips. Ergonomics 44, 1138–1166 (2001). https://doi.org/10.1080/00140130110085547

D. Albert, B. Moyer, K.E. Beschorner, Three-dimensional shoe kinematics during unexpected slips: implications for shoe-floor friction testing. IISE Trans. Occup. Ergon. Hum. Factors 5, 1–11 (2017). https://doi.org/10.1080/21577323.2016.1241963

A. Iraqi, R. Cham, M.S. Redfern, K.E. Beschorner, Coefficient of friction testing parameters influence the prediction of human slips. Appl. Ergon. 70, 118–126 (2018). https://doi.org/10.1016/J.APERGO.2018.02.017

A. Chanda, A. Reuter, K.E. Beschorner, Vinyl composite tile surrogate for mechanical slip testing. IISE Trans. Occup. Ergon. Hum. Factors. 7, 132–141 (2019). https://doi.org/10.1080/24725838.2019.1637381

K.E. Beschorner, J.L. Siegel, S.L. Hemler, V.H. Sundaram, A. Chanda, A. Iraqi et al., An observational ergonomic tool for assessing the worn condition of slip-resistant shoes. Appl. Ergon. 88, 103140 (2020). https://doi.org/10.1016/J.APERGO.2020.103140

S.L. Hemler, D.N. Charbonneau, A. Iraqi, M.S. Redfern, J.M. Haight, B.E. Moyer et al., Changes in under-shoe traction and fluid drainage for progressively worn shoe tread. Appl. Ergon. 80, 35–42 (2019). https://doi.org/10.1016/J.APERGO.2019.04.014

A. Cook, S. Hemler, V. Sundaram, A. Chanda, K. Beschorner, Differences in friction performance between new and worn shoes. IISE Trans. Occup. Ergon. Hum. Factors. 8, 209–214 (2021). https://doi.org/10.1080/24725838.2021.1925998

S.L. Hemler, E.M. Pliner, M.S. Redfern, J.M. Haight, K.E. Beschorner, Effects of natural shoe wear on traction performance: a longitudinal study. Footwear Sci. (2021). https://doi.org/10.1080/19424280.2021.1994022

A. Chanda, T.G. Jones, K.E. Beschorner, Generalizability of footwear traction performance across flooring and contaminant conditions. IISE Trans. Occup. Ergon. Hum. Factors. 6, 98–108 (2018). https://doi.org/10.1080/24725838.2018.1517702

L. Jakobsen, F.G. Lysdal, T. Bagehorn, U.G. Kersting, I.M. Sivebaek, The effect of footwear outsole material on slip resistance on dry and contaminated surfaces with geometrically controlled outsoles. Ergonomics (2022). https://doi.org/10.1080/00140139.2022.2081364

E.E. Meehan, N. Vidic, K.E. Beschorner, In contrast to slip-resistant shoes, fluid drainage capacity explains friction performance across shoes that are not slip-resistant. Appl. Ergon. 100, 103663 (2022). https://doi.org/10.1016/J.APERGO.2021.103663

M.G. Blanchette, C.M. Powers, The influence of footwear tread groove parameters on available friction. Appl. Ergon. 50, 237–241 (2015). https://doi.org/10.1016/J.APERGO.2015.03.018

T. Yamaguchi, Y. Katsurashima, K. Hokkirigawa, Effect of rubber block height and orientation on the coefficients of friction against smooth steel surface lubricated with glycerol solution. Tribol. Int. 110, 96–102 (2017). https://doi.org/10.1016/J.TRIBOINT.2017.02.015

S.L. Hemler, D.N. Charbonneau, K.E. Beschorner, Predicting hydrodynamic conditions under worn shoes using the tapered-wedge solution of Reynolds equation. Tribol. Int. 145, 106161 (2020). https://doi.org/10.1016/J.TRIBOINT.2020.106161

K.E. Beschorner, D.L. Albert, A.J. Chambers, M.S. Redfern, Fluid pressures at the shoe–floor–contaminant interface during slips: effects of tread & implications on slip severity. J. Biomech. 47, 458–463 (2014). https://doi.org/10.1016/J.JBIOMECH.2013.10.046

T. Jones, A. Iraqi, K. Beschorner, Performance testing of work shoes labeled as slip resistant. Appl. Ergon. 68, 304–312 (2018). https://doi.org/10.1016/J.APERGO.2017.12.008

S. Gupta, S. Chatterjee, A. Malviya, A. Chanda, Frictional assessment of low-cost shoes in worn conditions across workplaces. J. Bio.-Tribo-Corrosion 9, 1–13 (2023). https://doi.org/10.1007/S40735-023-00741-0

P.J. Walter, C.M. Tushak, S.L. Hemler, K.E. Beschorner, Effect of tread design and hardness on interfacial fluid force and friction in artificially worn shoes. Footwear Sci. 13, 245–254 (2021). https://doi.org/10.1080/19424280.2021.1950214

S.L. Hemler, D.N. Charbonneau, K.E. Beschorner, Effects of shoe wear on slipping–implications for shoe replacement threshold. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 61, 1424–1428 (2017). https://doi.org/10.1177/1541931213601839

S. Gupta, A. Malviya, S. Chatterjee, A. Chanda, Development of a portable device for surface traction characterization at the shoe-floor interface. Surfaces 5, 504–520 (2022). https://doi.org/10.3390/SURFACES5040036

ASTM F2913–19. Standard test method for measuring the coefficient of friction for evaluation of slip performance of footwear and test surfaces/flooring using a whole shoe tester n.d

S. Gupta, S.S. Sidhu, S. Chatterjee, A. Malviya, G. Singh, A. Chanda, Effect of floor coatings on slip-resistance of safety shoes. Coatings 12, 1455 (2022). https://doi.org/10.3390/coatings12101455

S. Gupta, S. Chatterjee, A. Malviya, A. Chanda, Traction performance of common formal footwear on slippery surfaces. Surfaces 5, 489–503 (2022). https://doi.org/10.3390/SURFACES5040035

A. Iraqi, K.E. Beschorner, Vertical ground reaction forces during unexpected human slips. Proc. Hum. Factors. Ergon. Soc. 61, 924–928 (2017). https://doi.org/10.1177/1541931213601713

K.E. Beschorner, M.S. Redfern, W.L. Porter, R.E. Debski, Effects of slip testing parameters on measured coefficient of friction. Appl Ergon 38, 773–780 (2007). https://doi.org/10.1016/J.APERGO.2006.10.005

C. Aschan, M. Hirvonen, T. Mannelin, E. Rajamäki, Development and validation of a novel portable slip simulator. Appl Ergon 36, 585–593 (2005). https://doi.org/10.1016/J.APERGO.2005.01.015

K.E. Beschorner, A. Iraqi, M.S. Redfern, R. Cham, Y. Li, Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions. Ergonomics 62, 668–681 (2019). https://doi.org/10.1080/00140139.2019.1567828

S. Gupta, G. Singh, A. Chanda, Prediction of diabetic foot ulcer progression: a computational study. Biomed. Phys. Eng. Express 7, 065020 (2021). https://doi.org/10.1088/2057-1976/AC29F3

G. Singh, S. Gupta, A. Chanda, Biomechanical modelling of diabetic foot ulcers: a computational study. J. Biomech. 127, 110699 (2021). https://doi.org/10.1016/J.JBIOMECH.2021.110699

S. Gupta, V. Gupta, A. Chanda, Biomechanical modeling of novel high expansion auxetic skin grafts. Int. J. Numer. Method Biomed. Eng. (2022). https://doi.org/10.1002/CNM.3586

ANSYS. ANSYS CFX Theory Guide 2015 n.d. http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS Fluent Theory Guide 15.pdf (accessed Aug 20, 2022)

D. Jackson, B. Launder, Osborne reynolds and the publication of his papers on turbulent flow. Annu. Rev. Fluid Mech. 39, 19–35 (2006). https://doi.org/10.1146/annurev.fluid.39.050905.110241

V. Yakhot, S.A. Orszag, Renormalization-group analysis of turbulence. Phys. Rev. Lett. 57, 1722 (1986). https://doi.org/10.1103/PhysRevLett.57.1722

Ferreira VG. Análise e implementação de esquemas de convecção e modelos de turbulência para simulação de escoamentos incompressíveis envolvendo superfícies livres. 2002. https://doi.org/10.11606/T.55.2001.TDE-14112001-083026

F.H. Harlow, P.I. Nakayama, Turbulence transport equations. Phys Fluids 10, 2323 (2004). https://doi.org/10.1063/1.1762039

T. Adams, C. Grant, H. Watson, A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. Avestia. Publ. Int. J. Mech. Eng. Mechatron. (2012). https://doi.org/10.11159/ijmem.2012.008