Effect of Ru loading on Ru/CeO2 catalysts for CO2 methanation
Tài liệu tham khảo
Administration, U. S. E. I. International energy outlook with projections to 2050 Choice reviews online 2019.
International Energy Agency (IEA), world energy outlook 2019-Analysis IEA, World energy outlook (2019).
Tollefson, 2021, COVID curbed carbon emissions in 2020 — but not by much, Nature, 589, 343, 10.1038/d41586-021-00090-3
Friedlingstein, 2020, Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269, 10.5194/essd-12-3269-2020
Bogaerts, 2017, CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design, Plasma Sources Sci. Technol., 26, 10.1088/1361-6595/aa6ada
Zheng, 2017, Energy related CO2 conversion and utilization: advanced materials/nanomaterials, reaction mechanisms and technologies, Nano Energy, 40, 512, 10.1016/j.nanoen.2017.08.049
Snoeckx, 2017, Plasma technology – a novel solution for CO2 conversion?, Chem. Soc. Rev., 46, 5805, 10.1039/C6CS00066E
2020, Global Status of CCS
Budinis, 2018, An assessment of CCS costs, barriers and potential, Energy Strat. Rev., 22, 61, 10.1016/j.esr.2018.08.003
Kätelhön, 2019, Climate change mitigation potential of carbon capture and utilization in the chemical industry, Proc. Natl. Acad. Sci., 116, 11187, 10.1073/pnas.1821029116
Müller, 2020, A guideline for life cycle assessment of carbon capture and utilization, Front. Energy Res., 8, 15, 10.3389/fenrg.2020.00015
Sápi, 2019, Noble-metal-free and pt nanoparticles-loaded, mesoporous oxides as efficient catalysts for CO2 hydrogenation and dry reforming with methane, J. CO2 Util., 32, 106, 10.1016/j.jcou.2019.04.004
Sápi, 2018, In situ DRIFTS and NAP-XPS exploration of the complexity of CO2 hydrogenation over size-controlled Pt nanoparticles supported on mesoporous NiO, J. Phys. Chem. C, 122, 5553, 10.1021/acs.jpcc.8b00061
Zamani, 2015, Optimization of CO2 methanation reaction over M*/Mn/Cu–Al2O3 (M*: Pd, Rh and Ru) catalysts, J. Ind. Eng. Chem., 29, 238, 10.1016/j.jiec.2015.02.028
Chang, 2020, Application of ceria in CO2 conversion catalysis, ACS Catal., 10, 613, 10.1021/acscatal.9b03935
Trovarelli, 1996, Catalytic properties of ceria and CeO2-containing materials, Catal. Rev., 38, 439, 10.1080/01614949608006464
Letichevsky, 2005, Obtaining CeO2–ZrO2 mixed oxides by coprecipitation: role of preparation conditions, Appl. Catal. B, 58, 203, 10.1016/j.apcatb.2004.10.014
Wang, 2016, CeO2-based heterogeneous catalysts toward catalytic conversion of CO2, J. Mater. Chem. A, 4, 5773, 10.1039/C5TA10737G
Valenzuela, 2000, Selective oxidehydrogenation of ethane with CO2 over CeO2-based catalysts, Catal. Today, 61, 43, 10.1016/S0920-5861(00)00366-7
di Monte, 2005, Heterogeneous environmental catalysis – a gentle art: CeO2–ZrO2 mixed oxides as a case history, Catal. Today, 100, 27, 10.1016/j.cattod.2004.11.005
Guo, 2018, Low-temperature CO2 methanation over CeO2-supported ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect, ACS Catal., 8, 6203, 10.1021/acscatal.7b04469
Dreyer, 2017, Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts, Appl. Catal. B, 219, 715, 10.1016/j.apcatb.2017.08.011
Kattel, 2017, Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface, J. Am. Chem. Soc., 139, 9739, 10.1021/jacs.7b05362
Wang, 2020, CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction, J. Energy Chem., 40, 22, 10.1016/j.jechem.2019.03.001
Pereira-Hernández, 2019, Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen, Nat. Commun., 10, 1358, 10.1038/s41467-019-09308-5
Xiao, 2020, Tuning metal-support interaction and oxygen vacancies of ceria supported nickel catalysts by Tb doping for n-dodecane steam reforming, Appl. Surf. Sci., 503, 10.1016/j.apsusc.2019.144319
Tada, 2012, Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures, Int. J. Hydrogen Energy, 37, 5527, 10.1016/j.ijhydene.2011.12.122
Bian, 2018, Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study, Catal. Today, 347, 31, 10.1016/j.cattod.2018.04.067
Cárdenas-Arenas, 2020, Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts, Appl. Catal. B, 265, 10.1016/j.apcatb.2019.118538
Winter, 2019, Elucidating the roles of metallic Ni and oxygen vacancies in CO2 hydrogenation over Ni/CeO2 using isotope exchange and in situ measurements, Appl. Catal. B, 245, 360, 10.1016/j.apcatb.2018.12.069
Rui, 2021, Highly active Ni/CeO2 catalyst for CO2 methanation: preparation and characterization, Appl. Catal. B, 282, 10.1016/j.apcatb.2020.119581
Wang, 2019, Preparation of stable and highly active Ni/CeO2 catalysts by glow discharge plasma technique for glycerol steam reforming, Appl. Catal. B, 249, 257, 10.1016/j.apcatb.2019.02.074
Galhardo, 2021, Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts, J. Am. Chem. Soc., 143, 4268, 10.1021/jacs.0c12689
Li, 2019, Enhanced CO2 methanation activity of Ni/anatase catalyst by tuning strong metal-support interactions, ACS Catal., 9, 6342, 10.1021/acscatal.9b00401
Vayssilov, 2011, Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles, Nat. Mater., 10, 310, 10.1038/nmat2976
Liu, 2021, Insights into the interfacial effects in heterogeneous metal nanocatalysts toward selective hydrogenation, J. Am. Chem. Soc., 143, 4483, 10.1021/jacs.0c13185
Tauster, 1981, Strong interactions in supported-metal catalysts, Science, 211, 1121, 10.1126/science.211.4487.1121
Han, 2020, Strong metal–support interactions between Pt single atoms and TiO2, Angew. Chem. Int. Ed., 59, 11824, 10.1002/anie.202003208
Tauster, 1978, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide, J. Am. Chem. Soc., 100, 170, 10.1021/ja00469a029
Miao, 2016, Catalysis mechanisms of CO2 and CO methanation, Catal. Sci. Technol., 6, 4048, 10.1039/C6CY00478D
Zhang, 2014, Hydrogenation mechanism of carbon dioxide and carbon monoxide on Ru(0001) surface: a density functional theory study, RSC Adv., 4, 30241, 10.1039/C4RA01655F
Panagiotopoulou, 2011, Mechanistic study of the selective methanation of CO over Ru/TiO2 catalyst: identification of active surface species and reaction pathways, J. Phys. Chem. C, 115, 1220, 10.1021/jp106538z
Zhao, 2018, In situ control of the adsorption species in CO2 hydrogenation: determination of intermediates and byproducts, J. Phys. Chem. C, 122, 20888, 10.1021/acs.jpcc.8b06508
Weatherbee, 1982, Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel, J. Catal., 77, 460, 10.1016/0021-9517(82)90186-5
Karelovic, 2013, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, J. Catal., 301, 141, 10.1016/j.jcat.2013.02.009
Wang, 2016, Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation, J. Am. Chem. Soc., 138, 6298, 10.1021/jacs.6b02762
Vogt, 2019, Understanding carbon dioxide activation and carbon–carbon coupling over nickel, Nat. Commun., 10, 5330, 10.1038/s41467-019-12858-3
Aitbekova, 2018, Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction, J. Am. Chem. Soc., 140, 13736, 10.1021/jacs.8b07615
He, 2018, Method for determining crystal grain size by X-ray diffraction, Cryst. Res. Technol., 53, 10.1002/crat.201700157
Sharma, 2018, CO2 methanation on Ru-doped ceria, J. Catal., 278, 297, 10.1016/j.jcat.2010.12.015
Sharma, 2016, Mechanistic insights into CO2 methanation over Ru-substituted CeO2, J. Phys. Chem. C, 120, 14101, 10.1021/acs.jpcc.6b03224
Sakpal, 2018, Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation, J. Catal., 367, 171, 10.1016/j.jcat.2018.08.027
Nguyen, 2019, Highly durable Ru catalysts supported on CeO2 nanocomposites for CO2 methanation, Appl. Catal. A Gen., 577, 35, 10.1016/j.apcata.2019.03.011
Hargreaves, 2016, Some considerations related to the use of the scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts, Catal. Struct. React., 2, 33
Guillén-Hurtado, 2020, Study of Ce/Pr ratio in ceria-praseodymia catalysts for soot combustion under different atmospheres, Appl. Catal. A, 590, 10.1016/j.apcata.2019.117339
Atribak, 2009, Role of yttrium loading in the physico-chemical properties and soot combustion activity of ceria and ceria–zirconia catalysts, J. Mol. Catal. A, 300, 103, 10.1016/j.molcata.2008.10.043
Eckle, 2011, Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases, J. Phys. Chem. C, 115, 1361, 10.1021/jp108106t
Gandhi, 2003, Automotive exhaust catalysis, J. Catal., 216, 433, 10.1016/S0021-9517(02)00067-2
Labhsetwar, 2006, Catalytic properties of strontium ruthenate perovskite prepared by hot isostatic pressure method, Stud. Surf. Sci. Catal., 162, 825, 10.1016/S0167-2991(06)80986-9
Porta, 2020, Synthesis of Ru-based catalysts for CO2 methanation and experimental assessment of intraporous transport limitations, Catal. Today, 343, 38, 10.1016/j.cattod.2019.01.042
Navarro-Jaén, 2019, Size-tailored Ru nanoparticles deposited over γ-Al2O3 for the CO2 methanation reaction, Appl. Surf. Sci., 483, 750, 10.1016/j.apsusc.2019.03.248
Hosokawa, 2003, State of Ru on CeO2 and its catalytic activity in the wet oxidation of acetic acid, Appl. Catal. B, 45, 181, 10.1016/S0926-3373(03)00129-2
He, 2019, Morphology-dependent catalytic activity of Ru/CeO2 in dry reforming of methane, Molecules, 24, 526, 10.3390/molecules24030526
Sakpal, 2018, Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation, J. Catal., 367, 171, 10.1016/j.jcat.2018.08.027
Morgan, 2015, Resolving ruthenium: XPS studies of common ruthenium materials, Surf. Interface Anal., 47, 1072, 10.1002/sia.5852
Hartadi, 2016, Methanol formation by CO2 hydrogenation on Au/ZnO catalysts – effect of total pressure and influence of CO on the reaction characteristics, J. Catal., 333, 238, 10.1016/j.jcat.2015.11.002