Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process

Materials Science and Engineering: C - Tập 59 - Trang 390-397 - 2016
Somayeh Mirsadeghi1, Saeed Shanehsazzadeh2, Fatemeh Atyabi1,3, Rassoul Dinarvand1,3
1Nanotechnology Research Center, School of Pharmacy, Tehran University of Medical Science, Tehran 1417614411, Iran
2Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
3Pharmaceutical Nanotechnology Department, School of Pharmacy, Tehran University of Medical Science, Tehran 1417614411, Iran

Tài liệu tham khảo

Colvin, 2007, Nanoparticles as catalysts for protein fibrillation, Proc. Natl. Acad. Sci. U. S. A., 104, 8679, 10.1073/pnas.0703194104 Baszkin, 1999 Hamley, 2012, A molecular model of Alzheimer amyloid β-peptide fibril formation, Chem. Rev., 112, 5147, 10.1021/cr3000994 M. Guo, P.M. Gorman, M. Rico, A. Chakrabartty, D.V. Laurents, Charge substitution shows that repulsive electrostatic interactions impede the oligomerization of Alzheimer amyloid peptides, FEBS Lett., 579 3574–3578. Fraser, 1991, pH-dependent structural transitions of Alzheimer amyloid peptides, Biophys. J., 60, 1190, 10.1016/S0006-3495(91)82154-3 Laurent, 2012, Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer's disease, RSC Adv., 2, 5008, 10.1039/c2ra01374f Mahmoudi, 2013, Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution, ACS Chem. Neurosci., 4, 475, 10.1021/cn300196n Necula, 2007, C.G. Labe, J. Biol. Chem., 282, 10311, 10.1074/jbc.M608207200 Kim, 2003, Biochem. Biophys. Res. Commun., 303, 576, 10.1016/S0006-291X(03)00393-0 Hashimoto, 2009, Biochim. Biophys. Acta, 1791, 289, 10.1016/j.bbalip.2009.01.012 Sun, 2008, Bioorg. Med. Chem., 16, 7177, 10.1016/j.bmc.2008.06.045 Cohen, 2006, Biochemistry, 45, 4727, 10.1021/bi051525c S. Mirsadeghi, R. Dinarvand, M.H. Ghahremani, M.R. Hormozi-Nezhad, Z. Mahmoudi, M.J. Hajipour, F. Atyabi, M. Ghavami, M. Mahmoudi, Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process, Nanoscale, http://dx.doi.org/10.1039/C4NR06009A(2015). Mahmoudi, 2012, Graphene oxide strongly inhibits amyloid beta fibrillation, Nanoscale, 4, 7322, 10.1039/c2nr31657a Hellstrand, 2010, ACS Chem. Neurosci., 1, 13, 10.1021/cn900015v Cabaleiro-Lago, 2010, Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation, ACS Chem. Neurosci., 1, 279, 10.1021/cn900027u Mahmoudi, 2011, Chem. Rev., 111, 253, 10.1021/cr1001832 Mahmoudi, 2010, Int. J. Biomed. Nanosci. Nanotechnol., 1, 164, 10.1504/IJBNN.2010.034651 Mahmoudi, 2012, Chem. Commun., 48, 3957, 10.1039/c2cc30213f Mahmoudi, 2010, J. Iran. Chem. Soc., 7, S1, 10.1007/BF03246181 Nighoghossian, 2007, Stroke, 38, 303, 10.1161/01.STR.0000254548.30258.f2 Saleh, 2007, Stroke, 38, 2733, 10.1161/STROKEAHA.107.481788 Dousset, 2006, Am. J. Neuroradiol., 27, 1000 Tourdias, 2012, Radiology, 264, 225, 10.1148/radiol.12111416 Brambilla, 2012, ACS Nano, 6, 5897, 10.1021/nn300489k Mahmoudi, 2011, ACS Chem. Neurosci., 2, 118, 10.1021/cn100100e Mahmoudi, 2011, Adv. Drug Deliv. Rev., 63, 24, 10.1016/j.addr.2010.05.006 Mahmoudi, 2012, Chem. Rev., 112, 2323, 10.1021/cr2002596 Rauch, 2012, Sci. Rep., 2, 868, 10.1038/srep00868 Mahmoudi, 2012, ACS Nano, 6, 2656, 10.1021/nn300042m Yue-Jian, 2010, Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent, Drug Dev. Ind. Pharm., 36, 1235, 10.3109/03639041003710151 Li, 2013, Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking, Theranostics, 3, 595, 10.7150/thno.5366 Sun, 2014, Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood–brain barrier, Int. J. Nanomedicine, 9, 3013, 10.2147/IJN.S62260 Akhavan, 2014, Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer, J. Mater. Chem. B, 2, 3306, 10.1039/c3tb21834a Seabra, 2014, Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated- and S-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment, Chem. Res. Toxicol., 27, 1207, 10.1021/tx500113u Yu, 2008, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew. Chem. Int. Ed., 47, 5362, 10.1002/anie.200800857 www.micromod.de/, DOI. D.C. Jiles, Introduction to Magnetism and Magnetic Materials, Second edition, CRC Press, AP1998. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Basic Books, AP1964. Deissler, 2008, Dipole in a magnetic field, work, and quantum spin, Phys. Rev. E, 77, 036609, 10.1103/PhysRevE.77.036609 Wu, 2008, Biochem. Biophys. Res. Commun., 373, 315, 10.1016/j.bbrc.2008.06.035 Klajnert, 2006, Biochem. Biophys. Res. Commun., 345, 21, 10.1016/j.bbrc.2006.04.041 Cabaleiro-Lago, 2008, Inhibition of amyloid protein fibrillation by polymeric nanoparticles, J. Am. Chem. Soc., 130, 15437, 10.1021/ja8041806 Olmedo, 2008, Bioconjug. Chem., 19, 1154, 10.1021/bc800016y Tjernberg, 1999, J. Biol. Chem., 274, 12619, 10.1074/jbc.274.18.12619 Kirschner, 1987, Proc. Natl. Acad. Sci. U. S. A., 84, 6953, 10.1073/pnas.84.19.6953 Mirsadeghi, 2015, Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process, Nanoscale, 7, 5004, 10.1039/C4NR06009A Tjernberg, 1996, J. Biol. Chem., 271, 8545, 10.1074/jbc.271.15.8545 Gordon, 2001, Biochemistry, 40, 8237, 10.1021/bi002416v Gordon, 2002, J. Pept. Res., 60, 37, 10.1034/j.1399-3011.2002.11002.x Gordon, 2003, Biochemistry, 42, 475, 10.1021/bi0259857 Bieschke, 2008, Biochemistry, 47, 50, 10.1021/bi701757v