Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process
Tài liệu tham khảo
Colvin, 2007, Nanoparticles as catalysts for protein fibrillation, Proc. Natl. Acad. Sci. U. S. A., 104, 8679, 10.1073/pnas.0703194104
Baszkin, 1999
Hamley, 2012, A molecular model of Alzheimer amyloid β-peptide fibril formation, Chem. Rev., 112, 5147, 10.1021/cr3000994
M. Guo, P.M. Gorman, M. Rico, A. Chakrabartty, D.V. Laurents, Charge substitution shows that repulsive electrostatic interactions impede the oligomerization of Alzheimer amyloid peptides, FEBS Lett., 579 3574–3578.
Fraser, 1991, pH-dependent structural transitions of Alzheimer amyloid peptides, Biophys. J., 60, 1190, 10.1016/S0006-3495(91)82154-3
Laurent, 2012, Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer's disease, RSC Adv., 2, 5008, 10.1039/c2ra01374f
Mahmoudi, 2013, Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution, ACS Chem. Neurosci., 4, 475, 10.1021/cn300196n
Necula, 2007, C.G. Labe, J. Biol. Chem., 282, 10311, 10.1074/jbc.M608207200
Kim, 2003, Biochem. Biophys. Res. Commun., 303, 576, 10.1016/S0006-291X(03)00393-0
Hashimoto, 2009, Biochim. Biophys. Acta, 1791, 289, 10.1016/j.bbalip.2009.01.012
Sun, 2008, Bioorg. Med. Chem., 16, 7177, 10.1016/j.bmc.2008.06.045
Cohen, 2006, Biochemistry, 45, 4727, 10.1021/bi051525c
S. Mirsadeghi, R. Dinarvand, M.H. Ghahremani, M.R. Hormozi-Nezhad, Z. Mahmoudi, M.J. Hajipour, F. Atyabi, M. Ghavami, M. Mahmoudi, Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process, Nanoscale, http://dx.doi.org/10.1039/C4NR06009A(2015).
Mahmoudi, 2012, Graphene oxide strongly inhibits amyloid beta fibrillation, Nanoscale, 4, 7322, 10.1039/c2nr31657a
Hellstrand, 2010, ACS Chem. Neurosci., 1, 13, 10.1021/cn900015v
Cabaleiro-Lago, 2010, Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation, ACS Chem. Neurosci., 1, 279, 10.1021/cn900027u
Mahmoudi, 2011, Chem. Rev., 111, 253, 10.1021/cr1001832
Mahmoudi, 2010, Int. J. Biomed. Nanosci. Nanotechnol., 1, 164, 10.1504/IJBNN.2010.034651
Mahmoudi, 2012, Chem. Commun., 48, 3957, 10.1039/c2cc30213f
Mahmoudi, 2010, J. Iran. Chem. Soc., 7, S1, 10.1007/BF03246181
Nighoghossian, 2007, Stroke, 38, 303, 10.1161/01.STR.0000254548.30258.f2
Saleh, 2007, Stroke, 38, 2733, 10.1161/STROKEAHA.107.481788
Dousset, 2006, Am. J. Neuroradiol., 27, 1000
Tourdias, 2012, Radiology, 264, 225, 10.1148/radiol.12111416
Brambilla, 2012, ACS Nano, 6, 5897, 10.1021/nn300489k
Mahmoudi, 2011, ACS Chem. Neurosci., 2, 118, 10.1021/cn100100e
Mahmoudi, 2011, Adv. Drug Deliv. Rev., 63, 24, 10.1016/j.addr.2010.05.006
Mahmoudi, 2012, Chem. Rev., 112, 2323, 10.1021/cr2002596
Rauch, 2012, Sci. Rep., 2, 868, 10.1038/srep00868
Mahmoudi, 2012, ACS Nano, 6, 2656, 10.1021/nn300042m
Yue-Jian, 2010, Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent, Drug Dev. Ind. Pharm., 36, 1235, 10.3109/03639041003710151
Li, 2013, Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking, Theranostics, 3, 595, 10.7150/thno.5366
Sun, 2014, Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood–brain barrier, Int. J. Nanomedicine, 9, 3013, 10.2147/IJN.S62260
Akhavan, 2014, Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer, J. Mater. Chem. B, 2, 3306, 10.1039/c3tb21834a
Seabra, 2014, Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated- and S-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment, Chem. Res. Toxicol., 27, 1207, 10.1021/tx500113u
Yu, 2008, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew. Chem. Int. Ed., 47, 5362, 10.1002/anie.200800857
www.micromod.de/, DOI.
D.C. Jiles, Introduction to Magnetism and Magnetic Materials, Second edition, CRC Press, AP1998.
R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Basic Books, AP1964.
Deissler, 2008, Dipole in a magnetic field, work, and quantum spin, Phys. Rev. E, 77, 036609, 10.1103/PhysRevE.77.036609
Wu, 2008, Biochem. Biophys. Res. Commun., 373, 315, 10.1016/j.bbrc.2008.06.035
Klajnert, 2006, Biochem. Biophys. Res. Commun., 345, 21, 10.1016/j.bbrc.2006.04.041
Cabaleiro-Lago, 2008, Inhibition of amyloid protein fibrillation by polymeric nanoparticles, J. Am. Chem. Soc., 130, 15437, 10.1021/ja8041806
Olmedo, 2008, Bioconjug. Chem., 19, 1154, 10.1021/bc800016y
Tjernberg, 1999, J. Biol. Chem., 274, 12619, 10.1074/jbc.274.18.12619
Kirschner, 1987, Proc. Natl. Acad. Sci. U. S. A., 84, 6953, 10.1073/pnas.84.19.6953
Mirsadeghi, 2015, Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process, Nanoscale, 7, 5004, 10.1039/C4NR06009A
Tjernberg, 1996, J. Biol. Chem., 271, 8545, 10.1074/jbc.271.15.8545
Gordon, 2001, Biochemistry, 40, 8237, 10.1021/bi002416v
Gordon, 2002, J. Pept. Res., 60, 37, 10.1034/j.1399-3011.2002.11002.x
Gordon, 2003, Biochemistry, 42, 475, 10.1021/bi0259857
Bieschke, 2008, Biochemistry, 47, 50, 10.1021/bi701757v