Effect of Oxide Particles on Ferrite Phase Transformation in Low Carbon Micro-alloyed Steels

Springer Science and Business Media LLC - Tập 74 - Trang 3227-3240 - 2021
Ping Wang1, Xiao Jia2, Si Zhang1, Yulong Yang1, Yaxin Ma2
1Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, China
2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China

Tóm tắt

The mechanism of ferrite nucleation induced by different oxide particles was studied in this article. The inclusion insertion experiment as a simulated experiment was carried out using different oxide powders on a thermal simulator under certain heat treatment conditions. The main results showed that the chemical influences of oxide particles on ferrite nucleation are difficult to occur under solid-phase transformation conditions. The change of microstructure near the oxide particles may be related to the effect of thermal properties of oxide particles. Heat conduction performance of oxide particles may cause slower heat dissipation around the oxide particles, resulting in the variation of temperature gradient near the oxide particles. This temperature gradient may lead to the increasing diffusion of carbon atoms, which increases the driving force of ferrite nucleation and growth. The effect of thermal properties of oxide particles on ferrite phase transformation seems to provide a new insight for the study of the mechanism of acicular ferrite nucleation induced by inclusions in low carbon steels.

Tài liệu tham khảo

Lou H N, Wang C, Wang B X, Wang Z D and Misra R D K, ISIJ Int.59 (2019) 312. Mizoguchi S, Takamura J: Report in Proc. 6th Int. Iron and Steel Confs., ISIJ Int. No.2331(1990) Japan. Byun J S, Shim J H, Cho Y W and Lee D N, Acta Mater.51(2003) 1593. Xian G, Lee M, Lee J and Kang N, Korean J. Met. Mater.53(2015) 480. Lambert-perlade A, Gourgues A F, Besson J, Sturel T and Pineau A, Metall. Mater. Trans.A 35(2004) 1039. Jiang Z H, Wang P, Li D Z and Li Y Y, Mater. Sci. Eng. A, 742(2019) 540. Lee M, Kang N, Liu S and Cho K, Sci. Technol. Weld. Joi. 21(2016) 711. Yang C Y, Luan Y K, Li D Z and Li Y Y, J. Mater. Sci. Technol.35(2019) 1298. Gao J Z, Fu P X, Liu H W and Li D Z, Metals 5(2015) 383. Yang J, Xu L Y, Zhu K, Wang R Z, Zhou L J and Wang W L, Steel Res. Int.86 (2015) 619. Zhu K and Yang Z G, Metall. Mater. Trans. A 42(2011) 2207. Chai F, Yang C F, Su H and Zhang Y Q,J Iron Steel Res. Int.16 (2009) 69. Karasev A V and Suito H, ISIJ Int.48 ( 2008) 1507. Wan X L, Wu K M, Nune K C, Li Y and Cheng L, Sci. Technol. Weld. Joi.20 (2015) 254. Gong P, Palmiere E J and Rainforth W M, Acta Mater.97 (2015) 392. Kang Y, Jeong S, Kang J H and Lee C, Metall. Mater. Trans. A, 47 (2016) 2842. Gong P, Palmiere E J and Rainforth W M, Acta Mater.119 ( 2016) 43. Zhang D, Terasaki H and Komizo Y I, Acta Mater.58 (2010) 1369. Yang C Y, Luan Y K, Li D Z and Li Y Y, Int. J. Fatigue 116 (2018) 396. Liu H H, Fu P X, Liu H W, Sun C, Sun M Y and Li D Z, Mater. Sci. Eng. A 737 (2018) 274. Park S C, Jung I H, Oh K S and Lee H G, ISIJ Int.44 (2014) 1016. García de Andrés C, Capdevila C, Madariaga I and Gutiérrez I, Scripta Mater.45 (2001) 709. Zhang Z and Farrar R A, Mater. Sci. Technol.12 (1999) 237. Barritte G S and Edmonds D V,Advances in the physical metallurgy and applications of steel, The Metals Society, London No.126(1982). Devillers L, Kaplan D, Marandet B, Ribes A and Riboud P V: Effects of residual, impurity, and micro- alloying elements in weldability and weld properties, The Welding Institute, London No.11(1983). Wang B X, Liu X H and Wang G D,Steel Res. Int.89 (2018) 6. Shim J H, Oh Y J, Suh J Y, Cho Y W, Shim J D, Byun J S and Lee D N, Acta mater.49 (2001) 2115. Shim J H, Cho Y W, Chung S H, Shim J D and Lee D N, Acta Metall. Inc.47 (1994) 2751. Gregg J M and Bhadeshia H K D H, Acta mater.45 (1997) 739. Ricks R A, Howell P R and Barritte G S, J. Mater. Sci.17 (1982) 732. Abson D J, Dolby R E and Hart P H M, Trends in Steels and Consumables for Welding, The Welding Institute, London No.11 (1978). Tomita Y, Saito N, Tsuzuki T, Tokunaga Y and Okamoto K, ISIJ Int.34 (1994) 829. Enomoto M, Met. Mater.4 (1998) 115. Bai G, Lu S P, Li D Z and Li Y Y, J. Electrochem Soc.162 ( 2015) c473. Liu Z Z, Kobayashi Y, Yin F X, Kuwabara M, Nagai K, ISIJ Int. 47 (2007) 1781. Yamamoto K, Hasegawa T and Takamura J I, ISIJ Int.36 (1996) 80. Gregg J M and Bhadeshia H K D H, Metall. Mater. Trans. A 25 (1994) 1603. Yang M, Zhu Y, Wang X, Wang Q, Ai L, Zhao L and Chu Y, Appl. Surf. Sci.497 (2019) 2. Yu Q, Ma X, Wang M, Yu C and Bai T, Appl. Surf. Sci.254 (2008) 5089. Ruan M, Yang D, Guo W, Zhang L, Li S, Shang Y, Wu Y, Zhang M, and Wang H, Appl. Surf. Sci.439 (2018) 188. Pradyyot, Pantnnaik, Handbook of Inorganic Chemical, McGraw-Hill Press, New York, NY (2002), p241 Lide D R, Handbook of Chemistry and Physics, 84th ed., CRC Press LLC, Florida, FL (2004), p2140