Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China

Zhongrui Wu1, Sheng He1, Yuanjia Han1, Gangyi Zhai2, He Xu3, Zhi Zhou2
1Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China
2Oil & Gas Survey Center, China Geological Survey, Beijing, 100029, China
3Research Institute of Exploration and Development of East China Branch of SINOPEC, Nanjing, 210011, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ardakani, O. H., Sanei, H., Ghanizadeh, A., et al., 2017. Hydrocarbon Potential and Reservoir Characteristics of Lower Cretaceous Garbutt Formation, Liard Basin Canada. Fuel, 209: 274–289. https://doi.org/10.1016/j.fuel.2017.07.106

Ardakani, O. H., Sanei, H., Ghanizadeh, A., et al., 2018. Do all Fractions of Organic Matter Contribute Equally in Shale Porosity? A Case Study from Upper Ordovician Utica Shale, Southern Quebec, Canada. Marine and Petroleum Geology, 92: 794–808. https://doi.org/10.13039/501100000159

Bao, S., Lin, T., Nie, H., et al., 2016. Preliminary Study of the Transitional Facies Shale Gas Reservoir Characteristics: Taking Permian in the Xiangzhong Depression as an Example. Earth Science Frontiers, 23(1): 44–53 (in Chinese with English Abstract)

Bernard, S., Horsfield, B., Schulz, H. M., et al., 2012a. Geochemical Evolution of Organic-Rich Shales with Increasing Maturity: A STXM and TEM Study of the Posidonia Shale (Lower Toarcian, Northern Germany). Marine and Petroleum Geology, 31(1): 70–89. https://doi.org/10.1016/j.marpetgeo.2011.05.010

Bernard, S., Wirth, R., Schreiber, A., et al., 2012b. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103: 3–11. https://doi.org/10.1016/j.coal.2012.04.010

Bernard, S., Horsfield, B., 2014. Thermal Maturation of Gas Shale Systems. Annual Review of Earth and Planetary Sciences, 42(1): 635–651. https://doi.org/10.1146/annurevearth-060313- 054850

Cao, T. T., Deng, M., Song, Z. G., et al., 2018. Characteristics and Controlling Factors of Pore Structure of the Permian Shale in Southern Anhui Province, East China. Journal of Natural Gas Science and Engineering, 60: 228–245. https://doi.org/10.1016/j.jngse.2018.10.018

Cardott, B. J., Landis, C. R., Curtis, M. E., 2015. Post-Oil Solid Bitumen Network in the Woodford Shale, USA—A Potential Primary Migration Pathway. International Journal of Coal Geology, 139: 106–113. https://doi.org/10.1016/j.coal.2014.08.012

Clarkson, C. R., Jensen, J. L., Pedersen, P. K., et al., 2012. Innovative Methods for Flow-Unit and Pore-Structure Analyses in a Tight Siltstone and Shale Gas Reservoir. AAPG Bulletin, 96(2): 355–374. https://doi.org/10.1306/05181110171

Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26–31. https://doi.org/10.1016/j.coal.2012.08.004

Curiale, J. A., 1983. Petroleum Occurrences and Source-Rock Potential of the Ouachita Mountains, Southeastern Oklahoma. Bull. Okla. Geol. Surv., 135: 65

Curiale, J. A., 1986. Origin of Solid Bitumens, with Emphasis on Biological Marker Results. Organic Geochemistry, 10(1–3): 559–580. https://doi.org/10.1016/0146-6380(86)90054-9

Dang, W., Zhang, J., Wei, X., et al., 2017. Geological Controls on Methane Ad-sorption Capacity of Lower Permian Transitional Black Shales in the Southern North China Basin, Central China: Experimental Results and Geological Implications. Journal of Petroleum Science and Engineering, 152: 456–470

Ding, J., Zhang, J., Yang, C., et al., 2019. Formation Evolution and Influencing Factors of Organic Pores in Shale. Journal of Southwest Petroleum University (Science & Technology Edition), 41(2): 33–44 (in Chinese with English Abstract)

Dong, T., Harris, N. B., Ayranci, K., et al., 2015. Porosity Characteristics of the Devonian Horn River Shale, Canada: Insights from Lithofacies Classification and Shale Composition. International Journal of Coal Geology, 141: 74–90. https://doi.org/10.1016/j.coal.2015.03.001

Dong, T., Harris, N. B., Ayranci, K., et al., 2017. The Impact of Rock Composition on Geomechanical Properties of a Shale Formation: Middle and Upper Devonian Horn River Group Shale, Northeast British Columbia, Canada. AAPG Bulletin, 101(2): 177–204

Dong, T., He, S., Chen, M., et al., 2019. Quartz Types and Origins in the Paleozoic Wufeng-Longmaxi Formations, Eastern Sichuan Basin, China: Implications for Porosity Preservation in Shale Reservoirs. Marine and Petroleum Geology, 106: 62–73. https://doi.org/10.1016/j.marpetgeo.2019.05.002

Ehsan, M., Gu, H., Akhtar, M. Muhammad., et al., 2018. Identification of Hydrocarbon Potential of Talhar Shale: Member of Lower Goru Formation by Using Well Logs Derived Parameters, Southern Lower Indus Basin, Pakistan. Journal of Earth Science, 29(3): 587–593. https://doi.org/10.1007/s12583-016-0910-2

Fishman, N. S., Hackley, P. C., Lowers, H. A., et al., 2012. The Nature of Porosity in Organic-Rich Mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, Offshore United Kingdom. International Journal of Coal Geology, 103: 32–50. https://doi.org/10.1016/j.coal.2012.07.012

Furmann, A., Mastalerz, M., Bish, D., et al., 2016. Porosity and Pore Size Distribution in Mudrocks from the Belle Fourche and Second White Specks Formations in Alberta, Canada. AAPG Bulletin, 100(8): 1265–1288. https://doi.org/10.1306/02191615118

Gibbs, J. W., 1948. The collected works of J. Willard Gibbs. Yale University Press, New Haven

George, S. C., Ruble, T. E., Dutkiewicz, A., et al., 2001. Assessing the Maturity of Oil Trapped in Fluid Inclusions Using Molecular Geochemistry Data and Visually-Determined Fluorescence Colours. Applied Geochemistry, 16(4): 451–473. https://doi.org/10.1016/s0883-2927(00)00051-2

Guo, H. J., He, R. L., Jia, W. L., et al., 2018. Pore Characteristics of Lacustrine Shale within the Oil Window in the Upper Triassic Yanchang Formation, Southeastern Ordos Basin, China. Marine and Petroleum Geology, 91: 279–296. https://doi.org/10.1016/j.marpetgeo.2018.01.013

Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8–51. https://doi.org/10.1016/j.coal.2016.06.010

Han, Y. J., Horsfield, B., Wirth, R., et al., 2017. Oil Retention and Porosity Evolution in Organic-Rich Shales. AAPG Bulletin, 101(6): 807–827. https://doi.org/10.1306/09221616069

Hill, R. J., Tang, Y. C., Kaplan, I. R., 2003. Insights into Oil Cracking Based on Laboratory Experiments. Organic Geochemistry, 34(12): 1651–1672. https://doi.org/10.1016/s0146-6380(03)00173-6

Hunt, J. M., 1996, Petroleum Geochemistry and Geology. WH Freeman and Company. New York, 1–58

Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen (“Migrabitumen”). International Journal of Coal Geology, 11(1): 65–79. https://doi.org/10.1016/0166-5162(89)90113-4

Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475–499. https://doi.org/10.1306/12190606068

Lewan, M. D., Pawlewicz, M. J., 2017. Reevaluation of Thermal Maturity and Stages of Petroleum Formation of the Mississippian Barnett Shale, Fort Worth Basin, Texas. AAPG Bulletin, 101(12): 1945–1970. https://doi.org/10.1306/01251716053

Liang, X., Liu, S., Wang, S., et al., 2019. Analysis of the Oldest Carbonate Gas Reservoir in China—New Geological Significance of the Dengying Gas Reservoir in the Weiyuan Structure, Sichuan Basin. Journal of Earth Science, 30(2): 348–366. https://doi.org/10.1007/s12583-017-0962-y

Liu, B., Schieber, J., Mastalerz, M., 2017. Combined SEM and Reflected Light Petrography of Organic Matter in the New Albany Shale (Devonian-Mississippian) in the Illinois Basin: A Perspective on Organic Pore Development with Thermal Maturation. International Journal of Coal Geology, 184: 57–72. https://doi.org/10.13039/501100004543

Liu, W. Q., Yao, J. X., Tong, J. N., et al., 2019. Organic Matter Accumulation on the Dalong Formation (Upper Permian) in Western Hubei, South China: Constraints from Multiple Geochemical Proxies and Pyrite Mor-phology. Palaeogeography, Palaeoclimatology, Palaeoecology, 514: 677–689. https://doi.org/10.13039/501100002855

Löhr, S. C., Baruch, E. T., Hall, P. A., et al., 2015. Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter?. Organic Geochemistry, 87: 119–132. https://doi.org/10.1016/j.orggeochem.2015.07.010

Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. https://doi.org/10.2110/jsr.2009.092

Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071–1098. https://doi.org/10.1306/08171111061

Loucks, R. G., Reed, R. M., 2014. Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic-Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrocks. GCAGS Transactions, 3: 51–60.

Loucks, R. G., Ruppel, S. C., Wang, X. Z., et al., 2017. Pore Types, Pore-Network Analysis, and Pore Quantification of the Lacustrine Shale-Hydrocarbon System in the Late Triassic Yanchang Formation in the Southeastern Ordos Basin, China. Interpretation, 5(2): SF63–SF79. https://doi.org/10.1190/int-2016-0094.1

Lu, J. M., Ruppel, S. C., Rowe, H. D., 2015. Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale. AAPG Bulletin, 99(2): 333–357. https://doi.org/10.1306/08201414055

Mastalerz, M., Glikson, M., 2000. In-situ Analysis of Solid Bitumen in Coal: Examples from the Bowen Basin and the Illinois Basin. International Journal of Coal Geology, 42(2/3): 207–220. https://doi.org/10.1016/s0166-5162(99)00040-3

Mahlstedt, N., Horsfield, B., 2012. Metagenetic Methane Generation in Gas Shales I. Screening Protocols Using Immature Samples. Marine and Petroleum Geology, 31(1): 27–42. https://doi.org/10.1016/j.marpetgeo.2011.06.011

Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621–1643. https://doi.org/10.1306/04011312194

Mastalerz, M., Drobniak, A., Stankiewicz, A. B., 2018. Origin, Properties, and Implications of Solid Bitumen in Source-Rock Reservoirs: A Review. International Journal of Coal Geology, 195: 14–36. https://doi.org/10.1016/j.coal.2018.05.013

Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177–200. https://doi.org/10.1306/07231212048

Misch, D., Gross, D., Hawranek, G., et al., 2019. Solid Bitumen in Shales: Petrographic Characteristics and Implications for Reservoir Characterization. International Journal of Coal Geology, 205: 14–31. https://doi.org/10.13039/501100002428

Nelson, P. H., 2009. Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales. AAPG Bulletin, 93(3): 329–340. https://doi.org/10.1306/10240808059

Peng, N., He, S., Hu, Q. H., et al., 2019. Organic Nanopore Structure and Fractal Characteristics of Wufeng and Lower Member of Longmaxi Shales in Southeastern Sichuan, China. Marine and Petroleum Geology, 103: 456–472. https://doi.org/10.1016/j.marpetgeo.2019.03.017

Qiu, X., Liu, Y., Dong, X., 2019. Organic Geochemical Characteristics of Shale from Dalong Formation in Jianshi Area, Western Hubei. Lithologic Reservoirs, 31(2): 96–104. https://doi.org/10.1016/j.palaeo.2018.11.015

Ross, D. J. K., Marc Bustin, R., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916–927. https://doi.org/10.1016/j.marpetgeo.2008.06.004

Stasiuk, L. D., Snowdon, L. R., 1997. Fluorescence Micro-Spectrometry of Synthetic and Natural Hydrocarbon Fluid Inclusions: Crude Oil Chemistry, Density and Application to Petroleum Migration. Applied Geochemistry, 12(3): 229–241. https://doi.org/10.1016/s0883-2927(96)00047-9

Suárez-Ruiz, I., Flores, D., Mendonça Filho, J. G., et al., 2012. Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. International Journal of Coal Geology, 99: 54–112. https://doi.org/10.1016/j.coal.2012.02.004

Taylor, G.H., Teichmüller, M., Davis, A., et al., 1998. Organic Petrology. Gebrüder Borntraeger, Stuttgart, Berlin, 704

Scott, A. C., 1999. Organic Petrology. A New Handbook Incorporating some Revised Parts of Stach’s Textbook of Coal Petrology. Gebrüder Borntraeger, Price DM, Berlin

Thommes, M., Kaneko, K., Neimark, A. V., et al., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9/10): 1051–1069. https://doi.org/10.1515/pac-2014-1117

Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence, 2nd edn. Springer, Berlin

Valenza, J. J. II, Drenzek, N., Marques, F., et al., 2013. Geochemical Controls on Shale Microstructure. Geology, 41(5): 611–614. https://doi.org/10.1130/g33639.1

Videtich, P. E., Roger, K., 1988. Depositional, Diagenetic, Thermal, and Maturation Histories of Cretaceous Mishrif Formation, Fateh Field, Dubai. AAPG Bulletin, 72(10): 1143–1159. https://doi.org/10.1306/703c996a-1707-11d7-8645000102c1865d

Waples, D. W., 2000. The Kinetics of In-Reservoir Oil Destruction and Gas Formation: Constraints from Experimental and Empirical Data, and from Thermodynamics. Organic Geochemistry, 31(6): 553–575. https://doi.org/10.1016/s0146-6380(00)00023-1

Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273–283. https://doi.org/10.1103/physrev.17.273

Washburn, E. W., 1921. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proceedings of the National Academy of Sciences, 7(4): 115–116. https://doi.org/10.1073/pnas.7(4):115

Wood, J. M., Sanei, H., Haeri-Ardakani, O., et al., 2018. Solid Bitumen in the Montney Formation: Diagnostic Petrographic Characteristics and Significance for Hydrocarbon Migration. International Journal of Coal Geology, 198: 48–62. https://doi.org/10.13039/100007605

Wu, Z., He, S., He, X., 2019. Pore Structure Characteristics and Comparisons of Upper Permian Longtan and Dalong Formation Transitional Facies Shale in Xiangzhong Lianyuan Depression. Earth Science (in Chinese with English Abstract)

Xia, J., Song, Z. G., Wang, S. B., et al., 2017. Preliminary Study of Pore Structure and Methane Sorption Capacity of the Lower Cambrian Shales from the North Guizhou Province. Journal of Natural Gas Science and Engineering, 38: 81–93. https://doi.org/10.1016/j.jngse.2016.12.021

Xiong, F. Y., Jiang, Z. X., Chen, J. F., et al., 2016. The Role of the Residual Bitumen in the Gas Storage Capacity of Mature Lacustrine Shale: A Case Study of the Triassic Yanchang Shale, Ordos Basin, China. Marine and Petroleum Geology, 69: 205–215. https://doi.org/10.1016/j.marpetgeo.2015.10.022

Xu, J., Sonnenberg, S. A., 2017. An SEM Study of Porosity in the Organic-rich Lower Bakken Member and Pronghorn Member, Bakken Formation, Williston Basin. Unconventional Resources Technology Conference, Austin, Texas, 24–26 July 2017. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 3213–3225

Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27–45. https://doi.org/10.13039/501100004613

Yang, R., He, S., Hu, Q. H., et al., 2017. Geochemical Characteristics and Origin of Natural Gas from Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China). International Journal of Coal Geology, 171: 1–11. https://doi.org/10.13039/501100004613

Zhao, S. F., Chen, W., Zhou, L., et al., 2019. Characteristics of Fluid Inclusions and Implications for the Timing of Hydrocarbon Accumulation in the Cretaceous Reservoirs, Kelasu Thrust Belt, Tarim Basin, China. Marine and Petroleum Geology, 99: 473–487. https://doi.org/10.1016/j.marpetgeo.2018.10.041

Zhao, Y. J., Chen, H. H., 2008. The Relationship between Fluorescence Colors of Oil Inclusions and Their Maturities. Earth Science, 33(1): 91–96 (in Chinese with English Abstract)

Zhang, J., He, S., Yi, J., 2014. Rock Thermo-Acoustic Emission and Basin Modeling Technologies Applied to the Study of Maximum Paleotemperatures and Thermal Maturity Histories of Lower Paleozoic Marine Shales in the Western Middle Yangtze Area. Acta Petrolei Sinica, 35(1): 58–67 (in Chinese with English Abstract)

Zhang, Q., Liu, R. H., Pang, Z. L., et al., 2016. Characterization of Microscopic Pore Structures in Lower Silurian Black Shale (S1l), Southeastern Chongqing, China. Marine and Petroleum Geology, 71: 250–259. https://doi.org/10.1016/j.marpetgeo.2015.12.015

Zhu, X. J., Cai, J. G., Wang, X. J., et al., 2014. Effects of Organic Components on the Relationships between Specific Surface Areas and Organic Matter in Mudrocks. International Journal of Coal Geology, 133: 24–34. https://doi.org/10.1016/j.coal.2014.08.009