Effect of Multi‐Walled Carbon Nanotubes on Glucose Oxidation by Glucose Oxidase or a Flavin‐Dependent Glucose Dehydrogenase in Redox‐Polymer‐Mediated Enzymatic Fuel Cell Anodes

ChemElectroChem - Tập 1 Số 11 - Trang 1988-1993 - 2014
Isioma Osadebe1, Dónal Leech1
1School of Chemistry, and Ryan Institute; National University of Ireland Galway; University Road Galway Ireland

Tóm tắt

AbstractThe addition of multi‐walled carbon nanotubes (MWCNTs) to enzymatic electrodes based on either glucose oxidase (GOx), or an oxygen‐insensitive flavin adenine dinucleotide‐dependent glucose dehydrogenase (FADGDH), increases the amount of {Os(4,4′‐dimethyl‐2,2′‐bipyridine)2[poly(vinylimidazole)]10Cl}Cl redox polymer at the electrode surface, indicating that MWCNTs provide a surface for the immobilisation of film components. Glucose oxidation is highest for films with 68 % (w/w) MWCNTs, and a decrease is observed with larger amounts; this decrease is related to a decrease in retained enzyme activity. Enzymatic electrodes provide 4.2 mA cm−2 current density at 0.12 V versus Ag/AgCl, for GOx‐based electrodes, compared to 2.7 mA cm−2 for FADGDH‐based electrodes in 50 mM phosphate‐buffered saline containing 150 mM NaCl at 37 °C. Current densities of 0.52 and 1.1 mA cm−2 are obtained for FADGDH and GOx‐based electrodes, respectively, operating at physiologically relevant 5 mM glucose concentrations. These enzymatic electrodes, thus, show promise for application as anodes in enzymatic fuel cells for in vivo or ex vivo power generation.

Từ khóa


Tài liệu tham khảo

Yahiro A. T., 1964, Biochim. Biophys. Acta‐Specialised Section on Biophysical Subjects, 88, 375

10.1039/b313149a

10.1021/cr020719k

10.1039/c3cp44617d

10.1016/j.elecom.2006.05.024

10.1021/ac0484169

10.1039/c3cp50767j

10.1021/ac00268a018

10.1021/ar9002015

10.1016/j.elecom.2010.02.019

10.1002/1521-4109(200011)12:16<1339::AID-ELAN1339>3.0.CO;2-C

10.1021/ja029510e

10.1021/la202945s

10.1016/j.electacta.2012.02.087

10.1039/c2cp42089a

10.1016/j.electacta.2013.08.173

10.1021/ja010408b

10.1016/j.bios.2006.10.023

10.1016/j.electacta.2006.03.050

10.1016/j.bioelechem.2005.03.002

10.1038/363603a0

10.1002/elan.200403113

10.1002/elan.200290000

10.1002/anie.200903463

10.1002/ange.200903463

10.1002/elan.201200536

10.1039/c3cp53351d

R. D. Milton F. Giroud A. E. Thumser S. D. Minteer R. C. T. Slade Electrochim. Acta­2014DOI:.

10.1007/978-1-62703-370-1_5

10.1021/ic00298a017

10.1021/ma00222a008

10.1149/2.026307jes

Bard A. J., Electrochemical Methods: Fundamentals and Applications

10.1021/ac50019a033

10.1021/ac4031708

Bergmeyer H. U., 1974, Methods of Enzymatic Analysis, 457

10.1111/j.1574-6968.1988.tb02797.x

10.1016/j.electacta.2013.01.153

10.1007/s00216-011-5650-7

M. Kitabayashi Y. Tsuji H. Kawaminami T. Kishimoto Y. Nishiya US Patent 7741100 B2 2010.

10.1016/0014-5793(89)81061-0