Ảnh hưởng của lớp Molybdenum Disulfide đến cảm biến sinh học dựa trên Resonance Plasmon bề mặt trong việc phát hiện vi khuẩn

Silicon - Tập 10 - Trang 245-256 - 2016
J. B. Maurya1, Y. K. Prajapati1, Rajeev Tripathi1
1Electronics and Communication Engineering Department, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India

Tóm tắt

Trong nghiên cứu này, một cảm biến sinh học dựa trên molybdenum disulfide (MoS2) và hiện tượng phản xạ plasmon bề mặt (SPR) được đề xuất. Các đường phản xạ của cảm biến SPR được đề xuất được phân tích và so sánh với các cảm biến SPR dựa trên graphene và các cảm biến SPR thông thường. Kết quả cho thấy các thông số hiệu suất của cảm biến được đề xuất - độ nhạy, độ chính xác phát hiện và yếu tố chất lượng đều được cải thiện nhờ việc sử dụng tính chất hấp phụ của MoS2 cho cả monolayer và bi-layer MoS2. Ngoài ra, ảnh hưởng của việc tăng số lớp MoS2 lên đường phản xạ cũng được phân tích và so sánh.

Từ khóa

#Molybdenum disulfide #cảm biến sinh học #plasmon bề mặt #phát hiện vi khuẩn #độ nhạy #độ chính xác.

Tài liệu tham khảo

Otto A (1968) Excitation of surface plasma waves in silver by the method of frustrated total reflection. Springer Z Physik 216:398–410 Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Springer Z Naturforsch 23(A):2135–2136 Liedberg B, Nylander C, Lundstrom I (1983) Surface plasmons resonance for gas detection and biosensing. Sens Actuators 4:299–304 Snopok B A, Kostyukevich K V, Lysenko S I, Lytvyn P M, Lytvyn O S, Mamykin S V, Zynyo S A, Shepelyavyj P E, Kostyukevich S A, Shirshov Y M, Venger E F (2001) Optical biosensors based on the surface plasmon resonance phenomenon: optimization of the metal layer parameters. Semicond Phys Quantum Electron Optoelectron 4(1):56–69 Zhu X M, Lin P H, Ao P, Sorensen L B (2002) Surface treatments for surface plasmon resonance biosensors. Elsevier Sens Actuators B: Chem 84(2–3):106–112 Ong B H, Yuan X, Tjin S C, Zhang J, Ng H M (2006) Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sens Actuators B: Chem 114 (2):1028–1034 Zhao J, Zhang X Y, Yonzon C R, Haes A J, Van Duyne R P (2006) Localized surface plasmon resonance biosensors. Nanomedicine (Lond) 1(2):219–228 Lee K L, Lee C W, Wang W S, Wei P K (2007) Sensitive biosensor array using surface plasmon resonance on metallic nanoslits. J Biomed Opt 12(4):044023 Raether H (1988) Surface plasmons on smooth and rough surfaces and on grating. Springer, Berlin, p 111 Wu L, Chu H S, Koh W S, Li E P (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–1440 Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377 (3):528–539 Lertvachirapaiboon C, Baba A, Ekgasit S, Thammacharoen C, Shinbo K, Kato K, Kaneko F (2011) Gold nanoparticles synthesis used for sensor applications. In: IEEE Conf Proc ISEIM Choi S H, Kim Y L, Byun K M (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19(2):458–466 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666– 669 Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308 Kim J A, Hwang T, Dugasani S R, Amin R, Kulkarni R, Park S H, Kim T (2013) Graphene based fiber optic surface Plasmon resonance for bio-chemical sensor applications. Sens Actuators B: Chem 187:426–433 Elias D C, Gorbachev R V, Mayorov A S, Morozov S V, Zhukov A A, Blake P, Ponomarenko L A, Grigorieva I V, Novoselov K S, Guinea F, Geim A K (2011) Dirac conesreshaped by interaction effects in suspended graphene. Nat Phys 7:701–704 Zeng S, Hu S, Xia J, Anderson T, Dinh X Q, Meng X M, Coquet P, Yong K T (2015) Graphene–mos2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens Actuators B Chem 207:801–810 Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307 Szunerits S, Maalouli N, Wijaya E, Vilcot J P, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405:1435–1443 Verma A, Prakash A, Tripathi R (2014) Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt Quantum Electron 47(5):1197–1205 Verma A, Prakash A, Tripathi R (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt Commun 357:106–112 Mak K F, Lee C, Hone J, Shan J, Heinz T F (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805 Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T (2013) Chemical vapor sensing with monolayer MoS2. Nano Lett 13(2):668–673 Du J, Wang Q, Jiang G, Xu C, Zhao C, Xiang Y, Chen Y, Wen S, Zhang H (2014) Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci Rep 4:6346. doi:10.1038/srep06346 Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100(21):213110 Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8(7):497–501 Sharma B K (2014) Solid state physics and devices-the harbinger of third wave of civilization. I.C. chips of future generation part 3. Carriers-phonon interaction in graphene. OpenStax-CNX module: m44257 Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135(16):5998–6001 Chen W, Santos E J G, Zhu W, Kaxiras E, Zhang Z (2013) Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett 13(2):509– 514 Ou J Z, Chrimes A F, Wang Y, Tang S Y, Strano M S, Kalantar-Zadeh K (2014) Ion-driven photoluminescence modulation of quasi-twodimensional MoS2 nanoflakes for applications in biological systems. Nano Lett 14(2):857–863 Xu H, He D, Fu M, Wang W, Wu H, Wang Y (2014) Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate. Opt Express 22(13):15969 Maurya J B, Prajapati Y K, Singh V, Saini J P, Tripathi R (2015) Performance of graphene–mos2 based surface plasmon resonance sensor using silicon layer. Opt Quant Electron 47(11):3599– 3611 Maurya J B, Prajapati Y K, Singh V, Saini J P (2015) Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl Phys A 121 (2):525–533 Euzéby J P (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47(2):590–592 Jenkins A T A, Buckling A, Clarke D J, Jarvis K (2004) Study of the attachment of Pseudomonas aeruginosa on Gold and modified Gold surfaces using surface plasmon resonance. Biotechnol Prog 20(4):1233–1236 Barnett A, Goldys E M (2010) Modeling of the SPR resolution enhancement for conventional and nanoparticle inclusive sensors by using statistical hypothesis testing. Opt Express 18(9):9384–9397 Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94 (3):031901 Yamamoto M (2002) Surface plasmon resonance (SPR) theory: tutorial. Rev Polarography 48:209 Pockrand I (1978) Surface plasma oscillations at silver surfaces with thin transparentand absorbing coatings. Surf Sci 72:577– 588