Effect of Miscanthus × giganteus ash on survival, biomass, reproduction and avoidance behaviour of the endogeic earthworm Aporrectodea caliginosa
Tóm tắt
To achieve the EU’s targets for reducing energy production from fossil fuels, the use of energy crops, such as Miscanthus × giganteus, is increasing resulting in a corresponding increase in waste ash from incineration. The chemical properties of Miscanthus ash (e.g. phosphorus and potassium content) may allow this waste material (currently landfilled) to be used as a fertiliser, but no information exists on the effect of the ash on the biological properties of soil. The main aim of this study was to determine the potential impact of Miscanthus ash on earthworms by assessing the effect on survival, change in biomass, reproduction and avoidance behaviour of the geophagous, soil dwelling earthworm, Aporrectodea caliginosa. Tests utilised a range of Miscanthus ash doses from 0 to 50 t ha−1 (0, 1, 2.5, 5, 10, 25, 50). Results showed that Miscanthus ash had no significant impact on A. caliginosa survival, biomass and reproduction, but negative trends were observed for biomass from 2.5 t ha−1 and for reproduction from 10 t ha−1. In contrast, a significant avoidance response was observed in the 25 and 50 t ha−1 treatment and according to ISO guideline 17512 there is a negative impact of the Miscanthus ash on soil habitat function at 25 t ha−1 and above as more than 80% of earthworms were in the control soil. It is suggested that this negative effect on soil habitat function could be attributed to a range of factors including the presence of heavy metals in the ash and a change in substrate pH, texture and/or osmotic stress. Further laboratory-based studies conducted over extended time periods with a more refined range of ash doses and associated field-based studies are required to validate the results and determine a more precise assessment of the threshold ash value inducing a loss of soil habitat function.
Tài liệu tham khảo
ADEME, DVNAC (2001) Etude de valorisation des cendres de chaufferies bois. ADEME, Angers
Aronsson KA, Ekelund NGA (2004) Biological effects of wood ash application to forest and aquatic ecosystems. J Environ Quality 33:1595–1605
Baker GH et al. (1998) Clay content of soil and its influence on the abundance of Aporrectodea trapezoides Duges (Lumbricidae). Appl Soil Ecol 9:333–337
Bart S et al. (2018) Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: current knowledge and recommendations for culture and experimental design. Environ Sci Pollut Res 25:33867–33881
Bart S et al. (2019a) Effects of two common fungicides on the reproduction of Aporrectodea caliginosa in natural soil. Ecotoxicol Environ Safety 181:518–524
Bart S et al. (2019b) Towards a better understanding of the life cycle of the earthworm Aporrectodea caliginosa: new data and energy-based modelling. Pedobiologia 77:150592
Baxter XC et al. (2012) Study of Miscanthus x giganteus ash composition–Variation with agronomy and assessment method. Fuel 95:50–62
Bidar G et al. (2016) Sustainability of an in situ aided phytostabilisation on highly contaminated soils using fly ashes: Effects on the vertical distribution of physicochemical parameters and trace elements. J Environ Manag 171:204–216
Blouin M et al. (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64:161–182
Booth LH et al. (2000) Growth development and fecundity of the earthworm Aporrectodea caliginosa after exposure to two organophosphates. New Zealand Plant Prot 53:221–225
RECORD (2016) Valorisation des cendres issues de la combustion de biomasse. Revue des gisements et des procédés associés. 91 p, n°14-0913/1A. https://record-net.org/storage/etudes/14-0913-1A/synthese/Synth_record14-0913_1A.pdf. Accessed 23 February 2021
Brami C et al. (2017) Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotoxicol Environ Safety 141:64–69
Chan K-Y, Mead JA (2003) Soil acidity limits colonisation by Aporrectodea trapezoides, an exotic earthworm. Pedobiologia 47:225–229
COMIFER (2009) Teneur en P, K et Mg des organes végétaux récoltés pour les cultures de plein champ et les principaux fourages. Groupe PKMg. https://comifer.asso.fr/images/publications/livres/tablesexportgrillescomifer2009.pdf. Accessed 23 February 2021
Cruz NC et al. (2019) Critical review of key variables affecting potential recycling applications of ash produced at large-scale biomass combustion plants. Resour Conserv Recycl 150:104427
Cruz-Paredes C et al. (2017) Risk assessment of replacing conventional P fertilizers with biomass ash: Residual effects on plant yield, nutrition, cadmium accumulation and mycorrhizal status. Sci Total Environ 575:1168–1176
Dazy M et al. (2009) Use of a plant multiple-species experiment for assessing the habitat function of a coke factory soil before and after thermal desorption treatment. Ecol Eng 35:1493–1500
Demeyer A et al. (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Tech 77:287–295
Demuynck S et al. (2014) Effects of field metal-contaminated soils submitted to phytostabilisation and fly ash-aided phytostabilisation on the avoidance behaviour of the earthworm Eisenia fetida. Ecotoxicol Environ Saf. 107:170–177
Dominguez, J (2004) State-of-the-Art and New Perspectives on Vermicomposting Research. In: Edwards CA (ed.) Earthworm Ecology. CRC Press LLC, Boca Raton, pp 401–424. https://doi.org/10.1201/9781420039719.ch20
Eriksen-Hamel NS, Whalen JK (2006) Growth rates of Aporrectodea caliginosa (Oligochaetae: Lumbricidae) as influenced by soil temperature and moisture in disturbed and undisturbed soil columns. Pedobiologia 50:207–215
Edwards CA, Lofty JR (1975) The invertebrate fauna of the Park Grass plots. Report Rothamsted Experimental Station for 1974, pt. 2, pp. 133–154
ESCo (2014) Matières fertilisantes d’origine résiduaire. Chapitre 2: caractéristiques physico-chimiques et biologiques des Mafor. https://www6.paris.inrae.fr/depe/content/download/3807/36278/file/ESCoMafor%20rapport_Chap2_oct2014.pdf. Accessed 23 February 2021
Europe, F (2018) Forecast of food, farming and fertilizer use in the European Union 2017 - 2027. Sustainable Agriculture in Europe, Brussels, Belgium.
European Biomass Association, (2017) Statistical report. Full report. AEBIOM, Brussels, p 264.
Fründ, H-C et al. (2011) Earthworms as Bioindicators of Soil Quality. In: Karaca A (ed) Biology of Earthworms, Soil Biology 24. Springer-Verlag, Berlin Heidelberg, p 261–278. https://doi.org/10.1007/978-3-642-14636-7
Füzesi I et al. (2015) Effects of Wood Ash on the Chemical Properties of Soil and Crop Vitality in Small Plot Experiments/ Fahamu hatása a talaj kémiai jellemzőire és a termény vitalitására egy kisparcellás kísérletben. Acta Silvatica et Lignaria Hungarica. 11:55–64
Gobat, J-M et al. (2004) The living soil: fundamentals of soil science and soil biology. Science Publishers Inc, Enfield, NH, USA
Grumiaux F et al. (2015) Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation. Ecotoxicol Environ Saf 113:183–190
Grumiaux F et al. (2010) Assessing the effects of FBC ash treatments of metal-contaminated soils using life history traits and metal bioaccumulation analysis of the earthworm Eisenia andrei. Chemosphere 79:156–161
Grumiaux F et al. (2007) Effect of fluidized bed combustion ashes used in metal polluted soil remediation on life history traits of the oligochaeta Eisenia andrei. Eur J Soil Biol 43:S256–S260
HMSO (2014) Waste Exemption: U10 Spreading Waste to Benefit Agricultural Land. Her Majesty’s Stationery Office, London, UK
Hooper DU et al. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35
Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments. J Soils Sed 1:15–20
Huotari N et al. (2015) Recycling of ash–For the good of the environment? For Ecol Manag 348:226–240
ISO, 10694 (1995) Soil quality - Determination of organic carbon and total carbon content total after dry combustion (ISO 10694:1995). ISO (International Organization for Standardization), Geneva
ISO, 10390 (2005) Qualité du sol - Détermination du pH (ISO 10390:2005). ISO (International Organization for Standardization), Geneva
ISO, 11885 (2009) Qualité de l’eau - Dosage d'éléments choisis par spectroscopie d'émission optique avec plasma induit par haute fréquence (ICP-OES) (ISO 11885:2007). ISO (International Organization for Standardization), Geneva
ISO, 11268-2 (2015) Soil quality - Effects of pollutants on earthworms - Part 2: determination of effects on reproduction of Eisenia fetida/Eisenia andrei (ISO 11268-2:2012). ISO (International Organization for Standardization), Geneva
ISO, 16772 (2004) Qualité du sol - Dosage du mercure dans les extraits de sol à l’eau régale par spectrométrie d’absorption atomique de vapeur froide ou par spectrométrie de fluorescence atomique de vapeur froide (ISO 16772:2004). ISO (International Organization for Standardization), Geneva
ISO, 17225-6 (2014) Solid biofuels - Fuel specifications and classes - Part 6: graded non-woody pellets (ISO 17225-6:2014). ISO (International Organization for Standardization), Geneva
ISO, 17512-1 (2008) Soil quality - Avoidance test for determining the quality of soils and effects of chemicals on behaviour - Part 1: test with earthworms (Eisenia fetida and Eisenia andrei) (ISO 17512-1:2008). ISO (International Organization for Standardization), Geneva
Khalil MA et al. (1996) Effects of metals and metal mixtures on survival and cocoon production of the earthworm Aporrectodea caliginosa. Pedobiologia 40:548–556
Kibblewhite MG et al. (2008) Soil health in agricultural systems. Philos Trans R Soc Lond B Biol Sci 363:685–701
Lanzerstorfer C (2017) Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel. J Environ Sci (China) 54:178–183
Lapied E et al. (2009) Influence of texture and amendments on soil properties and earthworm communities. Appl Soil Ecol 43:241–249
Leclercq-Dransart J et al. (2018) Litter breakdown as a tool for assessment of the efficiency of afforestation and ash-aided phytostabilization on metal-contaminated soils functioning in Northern France. Environ Sci Pollut Res Int 25:18579–18595
Lee S-H et al. (2014) Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. J Environ Manag 139:15–21
Lewandowski I et al. (2016) Progress on optimizing miscanthus biomass production for the European bioeconomy: Results of the EU FP7 project OPTIMISC. Front Plant Sci 7:1620
Lewandowski I et al. (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227
Lopareva-Pohu A et al. (2011) Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial: part 1. Influence on soil parameters and metal extractability. Sci Total Environ 409:647–654
Lowe CN, Butt KR (2005) Culture techniques for soil dwelling earthworms: a review. Pedobiologia 49:401–413
Lowe CN et al. (2016) Assessment of avoidance behaviour by earthworms (Lumbricus rubellus and Octolasion cyaneum) in linear pollution gradients. Ecotoxicol Environ Safety 124:324–328
Mathieu J (2018) EGrowth: a global database on intraspecific body growth variability in earthworm. Soil Biol Biochem 122:71–80
McTavish MJ et al. (2020) Anecic earthworms (Lumbricus terrestris) facilitate the burial of surface-applied wood ash. Biol Fertil Soils. 56:195–203
Michel R et al. (2012) Physicochemical changes in Miscanthus ash on agglomeration with fluidized bed material. Chem Eng J 207:497–503
Morandi F et al. (2016) Miscanthus as energy crop: environmental assessment of a miscanthus biomass production case study in France. J Cleaner Produc 137:313–321
Mortensen LH et al. (2018) Bioaccumulation of cadmium in soil organisms - With focus on wood ash application. Ecotoxicol Environ Saf 156:452–462
Muir MA et al. (2007) Short-term responses of two contrasting species of earthworms in an agricultural soil amended with coal fly-ash. Soil Biol Biochem 39:987–992
NF EN 12176 (1998) Caractérisation des boues Détermination de la valeur du pH. AFNOR (Association Française de Normalisation). Saint-Denis, France
NF EN 12879 (2000) Caractérisation des boues - Détermination de la perte au feu de la matière sèche. AFNOR (Association Française de Normalisation). Saint-Denis, France
NF U44-095 (2002) Amendements organiques - Composts contenant des matières d’intérêt agronomique, issues du traitement des eaux. AFNOR (Association Française de Normalisation). Saint-Denis, France
Nordin A (1994) Chemical elemental characteristics of biomass fuels. Biomass Bioenergy 6:339–347
Noyce GL et al. (2016) Soil microbial responses to wood ash addition and forest fire in managed Ontario forests. Appl Soil Ecol 107:368–380
Nsanganwimana F et al. (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manage 143:123–134
Ots K et al. (2017) The effect of oil shale ash and mixtures of wood ash and oil shale ash on the above- and belowground biomass formation of Silver birch and Scots pine seedlings on a cutaway peatland. Ecol Eng 108:296–306
Owojori OJ, Reinecke AJ (2009) Avoidance behaviour of two eco-physiologically different earthworms (Eisenia fetida and Aporrectodea caliginosa) in natural and artificial saline soils. Chemosphere 75:279–283
Owojori OJ et al. (2009) Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia. 52:351–360
Pukalchik M et al. (2018) Biochar, wood ash and humic substances mitigating trace elements stress in contaminated sandy loam soil: Evidence from an integrative approach. Chemosphere 203:228–238
Pulleman M et al. (2012) Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Current Opinion in Environmental. Sustainability 4:529–538
Qin J et al. (2017) Wood ash application increases pH but does not harm the soil mesofauna. Environ Pollut 224:581–589
R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org
Riehl A et al. (2010) Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash. Geoderma 155:67–74
Sims RW, Gerard BW (1999) Synopses of the British Fauna (No. 31 Revised)—Earthworms. FSC Publications, Shrewsbury
Singh, J (2018) Role of Earthworm in Sustainable Agriculture. In: Galanakis CM (ed) Sustainable Food Systems from Agriculture to Industry, Improving Production and Processing. Elsevier, London, UK, p 83–122. https://doi.org/10.1016/B978-0-12-811935-8.00003-2
Singh P et al. (2017) Nutrient and enzyme mobilization in earthworm casts: A comparative study with addition of selective amendments in undisturbed and agricultural soils of a mountain ecosystem. Int Biodeterior Biodegradation. 119:437–447
Spurgeon DJ et al. (2000) Relative sensitivity of life‐cycle and biomarker responses in four earthworm species exposed to zinc. Environ Toxicol Chem: Int J 19:1800–1808
Spurgeon DJ et al. (2003) A summary of eleven years progress in earthworm ecotoxicology: the 7th international symposium on earthworm ecology·Cardiff Wales·2002. Pedobiologia 47:588–606
van Gestel CAM (2012) Soil ecotoxicology: state of the art and future directions. ZooKeys 176:275-296
Vassilev SV et al. (2013) An overview of the composition and application of biomass ash. Part 1. Phase–mineral Chem Composit Classification Fuel 105:40–76
Vassilev SV et al. (2014) Trace element concentrations and associations in some biomass ashes. Fuel 129:292–313
Venter JM, Reinecke AJ (1988) The life-cycle of the compost worm Eisenia fetida (Oligochaeta). South African J Zool 23:161–165
Yeardley Jr RB et al. (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem: Int J 15:1532–1537
Yeardley RB et al. (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem: Int J 15:1532–1537
Yunusa IAM et al. (2009) Amendment of soil with coal fly ash modified the burrowing habits of two earthworm species. Appl Soil Ecol 42:63–68
XLSTAT (2014) Statistical Software for Excel. https://www.xlstat.com