Effect of Milling Time and the Consolidation Process on the Properties of Al Matrix Composites Reinforced with Fe-Based Glassy Particles

Metals - Tập 5 Số 2 - Trang 669-685
Özge Balcı1,2, K.G. Prashanth1, S. Scudino1, Duygu Ağaoğulları2, İsmail Duman2, M. Lütfi Öveçoğlu2, Volker Uhlenwinkel3, J. Eckert1,4
1Institute for Complex Materials, IFW Dresden, 270116 Dresden, Germany;
2Particulate Materials Laboratories (PML), Department of Metallurgical and Materials Engineering, İstanbul Technical University, 34469 İstanbul, Turkey;
3Institut für Werkstofftechnik, Universitä t Bremen, D-28359 Bremen, Germany;
4TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden, Germany

Tóm tắt

Al matrix composites reinforced with 40 vol% Fe50.1Co35.1Nb7.7B4.3Si2.8 glassy particles have been produced by powder metallurgy, and their microstructure and mechanical properties have been investigated in detail. Different processing routes (hot pressing and hot extrusion) are used in order to consolidate the composite powders. The homogeneous distribution of the glassy reinforcement in the Al matrix and the decrease of the particle size are obtained through ball milling. This has a positive effect on the hardness and strength of the composites. Mechanical tests show that the hardness of the hot pressed samples increases from 51–155 HV, and the strength rises from 220–630 MPa by extending the milling time from 1–50 h. The use of hot extrusion after hot pressing reduces both the strength and hardness of the composites: however, it enhances the plastic deformation significantly.

Từ khóa


Tài liệu tham khảo

Epple, M. (2003). Biomaterialien und Biomineralisation—Eine Einführung für Naturwissenschaftler, Mediziner und Ingenieure, Springer.

Miracle, 2005, Metal matrix composites—From science to technological significance, Compos. Sci. Technol., 65, 2526, 10.1016/j.compscitech.2005.05.027

Miracle, D.B., and Donaldson, S.L. (2001). ASM Handbook, ASM International.

Davis, J.R. (1993). ASM Specialty Handbook, ASM International.

Clyne, T.W., and Withers, P.J. (1993). An Introduction to Metal Matrix Composites, Cambridge University Press.

Kainer, K.U. (2006). Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering, WILEY-VCH.

Christman, 1998, An experimental and numerical study of deformation in metal-ceramic composites, Acta Metall., 37, 3029, 10.1016/0001-6160(89)90339-8

Slipenyuk, 2006, Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ration, Acta Mater., 54, 157, 10.1016/j.actamat.2005.08.036

Song, 2008, In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting, Mater. Sci. Eng. A, 473, 166, 10.1016/j.msea.2007.03.086

Wang, 2009, Properties of submicron AlN particulate reinforced aluminium matrix composite, Mater. Des., 30, 78, 10.1016/j.matdes.2008.04.039

Feng, 1997, In situ synthesis of Al2O3 and TiB2 particulate mixture reinforced aluminium matrix composites, Scr. Mater., 36, 467, 10.1016/S1359-6462(96)00387-9

Arsenault, 1984, The strengthening of aluminum 6061 by fiber and platelet silicon carbide, Mater. Sci. Eng. A, 64, 171, 10.1016/0025-5416(84)90101-0

Balci, 2013, Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering, J. Alloys Compd., 586, S78, 10.1016/j.jallcom.2013.03.007

Ibrahim, 1991, Particulate reinforce metal matrix composites: Review, J. Mater. Sci., 26, 1137, 10.1007/BF00544448

Scudino, 2009, Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties, Acta Mater., 57, 4529, 10.1016/j.actamat.2009.06.017

Inoue, 2001, Bulk amorphous and nanocrystalline alloys with high functional properties, Mater. Sci. Eng. A, 304–306, 1, 10.1016/S0921-5093(00)01551-3

Ashby, 2006, Metallic glasses as structural materials, Scr. Mater., 54, 321, 10.1016/j.scriptamat.2005.09.051

Yu, 2007, Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs, Mater. Sci. Eng. A, 444, 206, 10.1016/j.msea.2006.08.077

Aljerf, 2012, Strong and light metal matrix composites with metallic glass particulate reinforcement, Mater. Sci. Eng. A, 532, 325, 10.1016/j.msea.2011.10.098

Dudina, 2010, Cu-based metallic glass particle additions to significantly improve overall compressive properties of an Al alloy, Compos. A, 41, 1551, 10.1016/j.compositesa.2010.07.004

Lee, 2004, Fabrication of Ni–Nb–Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process, Scr. Mater., 50, 1367, 10.1016/j.scriptamat.2004.02.038

Yu, 2006, Fabrication and mechanical properties of Ni–Nb metallic glass particle-reinforced Al-based metal matrix composite, Scr. Mater., 54, 1445, 10.1016/j.scriptamat.2006.01.001

Scudino, 2008, Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites, J. Mater. Sci., 43, 4518, 10.1007/s10853-008-2647-5

Scudino, 2009, Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy, Acta Mater., 57, 2029, 10.1016/j.actamat.2009.01.010

Prashanth, 2011, Fabrication and response of Al70Y16Ni10Co4 glass reinforced metal matrix composites, Mater. Manuf. Processes, 26, 1242, 10.1080/10426914.2010.544824

Shen, 1999, Bulk ferromagnetic glasses prepared by flux melting and water quenching, Appl. Phys. Lett., 75, 49, 10.1063/1.124273

Fujii, 2011, Fabrication of Fe-based metallic glass particle reinforced Al-based composite materials by Friction Stir processing, Mater. Trans., 52, 1634, 10.2320/matertrans.M2011094

Suryanarayana, 2013, Iron-based bulk metallic glasses, Int. Mater. Rev., 58, 131, 10.1179/1743280412Y.0000000007

Kaban, 2014, Atomic structure and magnetic properties of Fe–Nb–B metallic glasses, J. Alloys Compd., 586, S189, 10.1016/j.jallcom.2012.09.008

Zheng, 2014, Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass particles, Mater. Des., 53, 512, 10.1016/j.matdes.2013.07.048

Murty, 1998, Novel materials synthesis by mechanical alloying/milling, Int. Mater. Rev., 43, 101, 10.1179/imr.1998.43.3.101

Suryanarayana, 2001, Mechanical alloying and milling, Prog. Mater. Sci., 46, 1, 10.1016/S0079-6425(99)00010-9

Harrigan, 1998, Commercial processing of metal matrix composites, Mater. Sci. Eng. A, 244, 75, 10.1016/S0921-5093(97)00828-9

Surreddi, 2010, Crystallization behavior and consolidation of gas-atomized Al84Gd6Ni7Co3 glassy powder, J. Alloys Compd., 491, 137, 10.1016/j.jallcom.2009.10.178

Kim, 2012, Production and characterization of Brass-matrix composites reinforced with Ni59Zr20Ti16Si2Sn3 glassy particles, Metals, 2, 79, 10.3390/met2020079

German, R.M. (1996). Sintering Theory and Practice, Wiley-Interscience.

Prashanth, 2010, Production, kinetic study and properties of Fe-based glass and its composites, Mat. Manuf. Processes, 25, 592, 10.1080/10426910903536808

Keryvin, 2009, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation, Intermetallics, 17, 211, 10.1016/j.intermet.2008.08.017

Cao, 2002, Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum, Mater. Sci. Eng. A, 337, 202, 10.1016/S0921-5093(02)00035-7

Gurland, 1963, The fracture strength of sintered tungsten carbide-cobalt alloys in relation to composition and particle spacing, Trans. Metall. Soc. AMIE, 227, 1146

Chawla, K.K. (1987). Composite Materials: Science and Engineering, Springer-Verlag.

Kim, 2000, On the rule of mixtures for the hardness of particle reinforced composites, Mater. Sci. Eng. A, 289, 30, 10.1016/S0921-5093(00)00909-6

Cahn, R.W., and Haasen, P. (1996). Physical Metallurgy, North-Holland.