Effect of M1–M2 Polarization on the Motility and Traction Stresses of Primary Human Macrophages
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambarus, C. A., S. Krausz, M. van Eijk, J. Hamann, T. R. Radstake, K. A. Reedquist, P. P. Tak, and D. L. Baeten. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J. Immunol. Methods 375:196–206, 2012.
Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–1069, 2007.
Biswas, S. K., M. Chittezhath, I. N. Shalova, and J. Y. Lim. Macrophage polarization and plasticity in health and disease. Immunol. Res. 53:11–24, 2012.
Biswas, S. K., and A. Mantovani. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11:889–896, 2010.
Chioda, M., E. Peranzoni, G. Desantis, F. Papalini, E. Falisi, S. Solito, S. Mandruzzato, and V. Bronte. Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Rev. 30:27–43, 2011.
Condeelis, J., and J. W. Pollard. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266, 2006.
Cougoule, C., E. Van Goethem, V. Le Cabec, F. Lafouresse, L. Dupre, V. Mehraj, J. L. Mege, C. Lastrucci, and I. Maridonneau-Parini. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur. J. Cell Biol. 91:938–949, 2012.
Dembo, M. The LIBTRC User’s Guide for Version 2.4. Boston, 2010.
Dembo, M., and Y. L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–2316, 1999.
Dunn, G. A. Characterising a kinesis response: time averaged measures of cell speed and directional persistence. Agents Actions Suppl. 12:14–33, 1983.
Hao, N. B., M. H. Lu, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012:948098, 2012.
Hind, L. E., M. Dembo, and D. A. Hammer. Macrophage motility is driven by frontal-towing with a force magnitude dependent on substrate stiffness. Integr. Biol. (Camb) 7:447–453, 2015.
Hind, L. E., J. L. Mackay, D. Cox, and D. A. Hammer. Two-dimensional motility of a macrophage cell line on microcontact-printed fibronectin. Cytoskeleton (Hoboken) 71:542–554, 2014.
Jannat, R. A., M. Dembo, and D. A. Hammer. Traction forces of neutrophils migrating on compliant substrates. Biophys. J. 101:575–584, 2011.
Mantovani, A., and A. Sica. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22:231–237, 2010.
Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555, 2002.
McWhorter, F. Y., T. Wang, P. Nguyen, T. Chung, and W. F. Liu. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA 110:17253–17258, 2013.
Nassiri, S., I. Zakeri, M. S. Weingarten, and K. L. Spiller. Relative expression of proinflammatory and antiinflammatory genes reveals differences between healing and nonhealing human chronic diabetic foot ulcers. J Invest Dermatol 135:1700–1703, 2015.
Oh, D. Y., H. Morinaga, S. Talukdar, E. J. Bae, and J. M. Olefsky. Increased macrophage migration into adipose tissue in obese mice. Diabetes 61:346–354, 2012.
Pelham, Jr, R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661–13665, 1997.
Pless, D. D., Y. C. Lee, S. Roseman, and R. L. Schnaar. Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J. Biol. Chem. 258:2340–2349, 1983.
Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89:676–689, 2005.
Sharma, V. P., B. T. Beaty, A. Patsialou, H. Liu, M. Clarke, D. Cox, J. S. Condeelis, and R. J. Eddy. Reconstitution of in vivo macrophage-tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. Intravital 1:77–85, 2012.
Solinas, G., S. Schiarea, M. Liguori, M. Fabbri, S. Pesce, L. Zammataro, F. Pasqualini, M. Nebuloni, C. Chiabrando, A. Mantovani, and P. Allavena. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J. Immunol. 185:642–652, 2010.
Spiller, K. L., R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, J. W. Daulton, and G. Vunjak-Novakovic. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488, 2014.
Vogel, D. Y., P. D. Heijnen, M. Breur, H. E. de Vries, A. T. Tool, S. Amor, and C. D. Dijkstra. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation. J. Neuroinflamm. 11:23, 2014.