Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mata, 2010, Microalgae for biodiesel production and other applications: A review, Renew. Sustain. Energy Rev., 14, 217, 10.1016/j.rser.2009.07.020
Chojnacka, 2004, Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae, Biotechnology, 3, 21, 10.3923/biotech.2004.21.34
Spolaore, 2006, Commercial applications of microalgae, J. Biosci. Bioeng., 101, 87, 10.1263/jbb.101.87
Borowitzka, 2013, High-value products from microalgae—Their development and commercialisation, J. Appl. Phycol., 25, 743, 10.1007/s10811-013-9983-9
Yeo, 2018, Identification of the key structural parameters for the design of a large-scale PBR, Biosyst. Eng., 171, 165, 10.1016/j.biosystemseng.2018.04.012
Lim, 2012, Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production, Microb. Cell Factories, 11, 96, 10.1186/1475-2859-11-96
Aramrueang, 2016, Effects of hydraulic retention time and organic loading rate on performance and stability of anaerobic digestion of Spirulina platensis, Biosyst. Eng., 147, 174, 10.1016/j.biosystemseng.2016.04.006
Chen, 2018, The potential of microalgae in biodiesel production, Renew. Sustain. Energy Rev., 90, 336, 10.1016/j.rser.2018.03.073
Barsanti, L., and Gualtieri, P. (2006). Algal culturing. Algae: Anatomy, Biochemistry, and Biotechnology Taylor and Francis, CRC Press. [1st ed.].
Pulz, 2001, Photobioreactors: Production systems for phototrophic microorganisms, Appl. Microbiol. Biotechnol., 57, 287, 10.1007/s002530100702
Seo, 2012, Numerical investigation of a bubble-column photo-bioreactor design for microalgae cultivation, Biosyst. Eng., 113, 229, 10.1016/j.biosystemseng.2012.08.001
Rösch, C., and Posten, C. (2012). Challenges and Perspectives of Microalgae Production, Karlsruhe Institute of Technology (KIT).
Metsoviti, M.N., Papapolymerou, G., Karapanagiotidis, I.T., and Katsoulas, N. (2019). Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants, 8.
Li, 2012, Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater, Biotechnol. Bioeng., 109, 2222, 10.1002/bit.24491
Xu, 2016, The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30, Plant Physiol. Biochem., 106, 305, 10.1016/j.plaphy.2016.05.021
Singh, 2015, Effect of temperature and light on the growth of algae species: A review, Renew. Sustain. Energy Rev., 50, 431, 10.1016/j.rser.2015.05.024
Difusa, 2015, Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species, Biofuels, 6, 37, 10.1080/17597269.2015.1045274
Lee, 2015, Growth kinetic models for microalgae cultivation: A review, Algal Res., 12, 497, 10.1016/j.algal.2015.10.004
Minhas, 2016, A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids, Front. Microbiol., 7, 546, 10.3389/fmicb.2016.00546
Wijffels, 2010, Microalgae for the production of bulk chemicals and biofuels, Biofuels Bioprod. Bioref., 4, 287, 10.1002/bbb.215
2018, Biodiesel synthesis from Chlorella vulgaris under effect of nitrogen limitation, intensity and quality light: Estimation on the based fatty acids profiles, Mol. Biol. Rep., 45, 1145, 10.1007/s11033-018-4266-9
Khalili, 2015, Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris, Biotechnol. Bioprocess Eng., 20, 284, 10.1007/s12257-013-0845-8
Liu, 2008, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717, 10.1016/j.biortech.2007.09.073
Gouveia, 2009, Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 36, 269, 10.1007/s10295-008-0495-6
Metsoviti, 2019, Effect of nitrogen concentration, two-stage and prolonged cultivation on growth rate, lipid and protein content of Chlorella vulgaris, J. Chem. Technol. Biotechnol., 94, 1466, 10.1002/jctb.5899
George, 2014, Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus—A potential strain for bio-fuel production, Bioresour. Technol., 171, 367, 10.1016/j.biortech.2014.08.086
He, 2015, Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae, Bioresour. Technol., 191, 219, 10.1016/j.biortech.2015.05.021
Ruangsomboon, 2012, Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2, Bioresour. Technol., 109, 261, 10.1016/j.biortech.2011.07.025
Baiee, 2016, Effect of phosphorus concentration and light intensity on protein content of microalga Chlorella vulgaris, Mesop. Environ. J., 2, 75
SAG. Sammlung von Algenkulturen der Universität Göttingen (2019, November 04). Culture Collection of Algae, Abteilung Experimentelle Phykologie und Sammlung von Algenkulturen (EPSAG), Universität Göttingen, Deutschland. Available online: http://epsag.uni-goettingen.de.
Chen, 2011, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review, Bioresour. Technol., 102, 71, 10.1016/j.biortech.2010.06.159
Perez, 2017, An effective method for harvesting of marine microalgae: pH induced flocculation, Bioresour. Technol., 97, 20
Safi, 2014, Morphology, composition, production, processing and applications of Chlorella vulgaris: A review, Renew. Sustain. Energy Rev., 35, 265, 10.1016/j.rser.2014.04.007
Association of Official Analytical Chemists (AOAC) (1995). Official Methods of Analysis of the Association of Official Analytical Chemists International, AOAC. [16th ed.].
Biancarosa, 2017, Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters, J. Appl. Phycol., 29, 1001, 10.1007/s10811-016-0984-3
Folch, 1957, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem., 226, 497, 10.1016/S0021-9258(18)64849-5
Ryckebosch, 2012, Optimization of an analytical procedure for extraction of lipids from microalgae, J. Am. Oil Chem. Soc., 89, 189, 10.1007/s11746-011-1903-z
Dean, 2010, Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae, Bioresour. Technol., 101, 4499, 10.1016/j.biortech.2010.01.065
Sharma, 2012, Effects of culture conditions on growth and biochemical profile of Chlorella vulgaris, J. Plant Pathol. Microb., 3, 5, 10.4172/2157-7471.1000131
Daliry, 2017, Investigation of optimal condition for Chlorella vulgaris microalgae growth, Glob. J. Environ. Sci. Manag., 3, 217
Khoeyi, 2010, Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris, Aquac. Int., 20, 41, 10.1007/s10499-011-9440-1
Seyfabadi, 2011, Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes, J. Appl. Phycol., 23, 721, 10.1007/s10811-010-9569-8
Lichtenthaler, 1987, Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods Enzymol., 148, 350, 10.1016/0076-6879(87)48036-1
Das, 2011, Enhanced algae growth in both phototrophic and mixotrophic culture under blue light, Bioresour. Technol., 102, 3883, 10.1016/j.biortech.2010.11.102
Ra, 2016, Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae, Bioresour. Technol., 212, 254, 10.1016/j.biortech.2016.04.059
Blair, 2014, Light and growth medium effect on Chlorella vulgaris biomass production, J. Environ. Chem. Eng., 2, 665, 10.1016/j.jece.2013.11.005
Wong, 2016, Effect of different light sources on algal biomass and lipid production in internal Leds-illuminated photobioreactor, J. Mar. Biol. Aquac., 2, 1
Atta, 2013, Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris, Bioresour. Technol., 148, 373, 10.1016/j.biortech.2013.08.162
Rubio, 2002, A mechanistic model of photosynthesis in microalgae, Bioresour. Technol., 81, 459
Takache, 2012, Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor, Biotechnol. Prog., 28, 681, 10.1002/btpr.1545
Sasi, 2011, Growth kinetics and lipid production using Chlorella vulgaris in a circulating loop photobioreactor, J. Chem. Technol. Biotechnol., 86, 875, 10.1002/jctb.2603
Solovchenko, 2008, Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa, J. Phycol., 20, 245, 10.1007/s10811-007-9233-0
Liu, 2012, Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation, Appl. Biochem. Biotechnol., 166, 2127, 10.1007/s12010-012-9639-2
Xia, 2013, Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita, Chin. J. Oceanol. Limnol., 3, 1
Pruvost, 2011, Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application, Bioresour. Technol., 102, 150, 10.1016/j.biortech.2010.06.153
Zhang, Y., Dong, F., and Jin, P. (2017, January 23–25). Effects of Light-emitting Diodes (LEDs) on the Accumulation of Lipid Content in Microalgae. Proceedings of the 2nd International Conference on Sustainable Energy and Environment Protection (ICSEEP 2017), Changsha, China.
2016, Effect of green and red light in lipid accumulation and transcriptional profile of genes implicated in lipid biosynthesis in Chlamydomonas reinhardtii, Biotechnol. Prog., 32, 1404, 10.1002/btpr.2368
Kendirlioglu, 2017, Effect of different wavelengths of light on growth, pigment content and protein amount of Chlorella vulgaris, Fresenius Environ. Bull., 26, 7974
Asuthkar, 2016, Effect of different wavelengths of light on the growth of Chlorella pyrenoidosa, Int. J. Pharm. Sci. Res., 7, 847