Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tác động của Quản lý Dinh dưỡng Tích hợp và Phun Lá Kẽm ở Dạng Nano lên Dinh dưỡng Cây Lúa, Năng suất và Tính Chất Hóa Học, Sinh Học Đất ở Inceptisols
Tóm tắt
Tác động của việc sử dụng kết hợp giữa dinh dưỡng vô cơ và hữu cơ cùng với phun lá kẽm ở dạng nano lên cây lúa chưa từng được nghiên cứu đến nay. Giả thuyết cho rằng sự kết hợp này có thể đảm bảo sự tăng trưởng và năng suất tốt hơn trong Inceptisols thông qua việc cải thiện khả năng có sẵn của dinh dưỡng cũng như hoạt động sinh học của đất. Tám sự kết hợp điều trị (mức độ thay đổi của liều nitơ khuyến nghị (RDN), từ phân chuồng (FYM) và/hoặc kẽm nano) đã được thử nghiệm trên cây lúa (var. Shatabdi (IET 4786)). Các thông số tăng trưởng và năng suất tiêu chuẩn, phân tích sắc tố, trạng thái dinh dưỡng đất có sẵn, nồng độ và hấp thụ của thực vật, tình trạng vi sinh vật trong đất và hoạt động enzym dehydrogenase đã được phân tích. Năng suất hạt tối đa (5,06 t ha−1) thu được từ sự kết hợp 75% RDN từ phân bón hóa học thương mại + 25% RDN từ FYM + xử lý phun kẽm nano cho thấy số lượng cành tối đa m−2 và số hạt nhiều hơn per cành, tăng mức năng suất hạt lên 8,82% so với 100% RDN từ phân bón hóa học (4,65 t ha−1). Việc ứng dụng kẽm dạng nano một mình đã dẫn đến năng suất hạt 4,01 t ha−1, cải thiện 17,6% so với đối chứng. Dân số vi sinh vật tốt hơn trong đất được đảm bảo nhờ việc cải thiện hoạt động enzym dehydrogenase trong các ô đất được xử lý bằng FYM so với 100% liều phân bón khuyến nghị ở tất cả các giai đoạn tăng trưởng của cây lúa. Việc áp dụng kẽm ở dạng nano trong hệ thống INM không chỉ nâng cao năng suất của cây lúa và hiệu quả sử dụng kẽm mà còn cải thiện sức khỏe của đất bằng cách cải thiện các tính chất hóa học và sinh học của đất.
Từ khóa
#quản lý dinh dưỡng tích hợp #phun lá #kẽm nano #năng suất lúa #cây lúa #tính chất đấtTài liệu tham khảo
Abid M, Batool T, Siddique G, Ali S, Binyamin R, Shahid MJ, Rizwan M, Alsahli AA, Alyemeni MN (2020) Integrated nutrient management enhances soil quality and crop productivity in maize-based cropping system. Sustain 12:10214. https://doi.org/10.3390/su122310214
Adhikary S, Mandal N, Rakshit R, Das A, Kumar V, Kumari N, Choudhary SK, Homa F (2020) Field evaluation of Zincated nanoclay polymer composite (ZNCPC): impact on DTPA-extractable Zn, sequential Zn fractions and apparent Zn recovery under rice rhizosphere. Soil Tillage Res 201:104607. https://doi.org/10.1016/j.still.2020.104607
Ajaykumar R, Sivakumar SD (2020) Effect of integrated nutrient management on growth, physiological, nutrient uptake, root and yield parameters of transplanted lowland rice. Curr J Appl Sci Technol 39:35–43. https://doi.org/10.9734/cjast/2020/v39i4031110
AOAC (1995) Official methods of analysis, 16th edn. Association of official analytical chemists, Washington, DC
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1
Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313. https://doi.org/10.1023/a:1012976615056
Bahadur L, Tiwari DD, Mishra J, Gupta BR (2012) Effect of integrated nutrient management on yield, microbial population and changes in soil properties under rice-wheat cropping system in sodic soil. J Indian Soc Soil Sci 60:326–329
Bala R, Kalia A, Dhaliwal SS (2019) Evaluation of efficacy of ZnO nanoparticles as remedial zinc nano fertilizer for rice. J Soil Sci Plant Nutr 19:379–389. https://doi.org/10.1007/s42729-019-00040-z
Banik P, Sharma RC (2009) Effect of organic and inorganic sources of nutrients on the winter crops-rice cropping system in sub-humid tropics of India. Arch Agron Soil Sci 55:285–294. https://doi.org/10.1080/03650340802431277
Borah D, Ghosh M, Ghosh DC, Gohain T (2016) Integrated nutrient management in rainfed upland rice in the northeastern region of India. Agric Res 5:252–260. https://doi.org/10.1007/s40003-016-0218-6
Duncun DB (1955) Multiple range and multiple test. Biometrics 11:1–42
Fageria NK, Baligar VC, Clark RB (2002) Micronutrients in Crop Production Adv Agron 77:185–268. https://doi.org/10.1016/S0065-2113(02)77015-6
Fageria NK, Das Santos AB, Cobucci T (2011) Zinc nutrition of lowland rice. Commun Soil Sci Plant Anal 42:1719–1727. https://doi.org/10.1080/00103624.2011.584591
FAOSTAT (2020) https://www.fao.org/faostat/en/#data/QCL. Accessed 14 Nov 2022
Ghoneim AM (2016) Effect of different methods of Zn application on rice growth, yield and nutrients dynamics in plant and soil. J Agric Ecol Res Int 6:1–9. https://doi.org/10.9734/JAERI/2016/22607
Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine 2:789–803. https://doi.org/10.2217/17435889.2.6.789
Islam MM, Urmi TA, Rana MS, Alam MS, Haque MM (2019) Green manuring effects on crop morpho-physiological characters, rice yield and soil properties. Physiol Mol Biol Plants 25:303–312. https://doi.org/10.1007/s12298-018-0624-2
Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Private Ltd., New Delhi, India
Karki S, Poudel NS, Bhusal G, Simkhada S, Regmi BR, Adhikari B, Poudel S (2018) Growth parameter and yield attributes of rice (Oryza Sativa) as influenced by different combination of nitrogen sources. World J Agric Res 6:58–64. https://doi.org/10.12691/wjar-6-2-4
Kheir AMS, Abouelsoud HM, Hafez EM, Ali OAM (2019) Integrated effect of nano-Zn, nano-Si, and drainage using crop straw–filled ditches on saline sodic soil properties and rice productivity. Arab J Geosci 12:471. https://doi.org/10.1007/s12517-019-4653-0
Kheyri N, Norouzi HA, Mobasser HR, Torabi B (2019) Effects of silicon and zinc nanoparticles on growth, yield, and biochemical characteristics of rice. Agron J 111:1–7. https://doi.org/10.2134/agronj2019.04.0304
Klein DA, Loh TC, Goulding RL (1971) A rapid procedure to evaluate dehydrogenase activity of soils low in organic matter. Soil Biol Biochem 3:385–387. https://doi.org/10.1016/0038-0717(71)90049-6
Kumar V, Saikia J, Barik N, Das T (2018) Effect of integrated nutrient management on soil enzymes, microbial biomass carbon and microbial population under okra cultivation. Int J Biochem Res Rev 20:1–7. https://doi.org/10.9734/IJBCRR/2017/38868
Kumar S, Meena RS, Singh RK, Munir TM, Datta R, Danish S, Yadav GS, Kumar S (2021) Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice-based cropping system. Sci Rep 11:5289. https://doi.org/10.1038/s41598-021-84742-4
Kumari S, Chattopadhyaya N, Mandal JS, M, (2017) Integrated nutrient management boost the soil biological properties in rice rhizosphere. J Crop Weed 13:116–124
Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
Mabesa RL, Impa SM, Grewal D, Johnson-Beebout SE (2013) Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops Res 149:223–233. https://doi.org/10.1016/j.fcr.2013.05.012
Mangaraj S, Paikaray RK, Maitra S, Pradhan SR, Garnayak LM, Satapathy M, Swain B, Jena S, Nayak B, Shankar T, Alorabi M, Gaber A, Hossain A (2022) Integrated nutrient management improves the growth and yield of rice and green gram in a rice—green gram cropping system under the coastal plain agro-climatic condition. Plants 11:142. https://doi.org/10.3390/plants11010142
Mitra B, Mandal B (2012) Effect of nutrient management and straw mulching on crop yield, uptake and soil fertility in rapeseed (Brassica campestris) - green gram (Vigna radiata) - rice (Oryza sativa) cropping system under Gangetic plains of India. Arch Agron Soil Sci 58:213–222. https://doi.org/10.1080/03650340.2010.512611
Modena MM, Rühle B, Burg TP, Wuttke S (2019) Nanoparticle characterization: what to measure? Adv Mater 31:1901556. https://doi.org/10.1002/adma.201901556
Moe K, Moh SM, Htwe AZ, Kajihara Y, Yamakawa T (2019) Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Sci 26:309–318. https://doi.org/10.1016/j.rsci.2019.08.005
Mondal S, Mallikarjun M, Ghosh M, Ghosh DC, Timsina J (2015) Effect of integrated nutrient management on growth and productivity of hybrid rice. J Agric Sci Technol B5:297–308. https://doi.org/10.17265/2161-6264/2015.05.001
Mondal S, Mallikarjun M, Ghosh M, Ghosh DC, Timsina J (2016) Influence of integrated nutrient management (INM) on nutrient use efficiency, soil fertility and productivity of hybrid rice. Arch Agron Soil Sci 62:1521–1529. https://doi.org/10.1080/03650340.2016.1148808
Mourdikoudis S, Pallares RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934. https://doi.org/10.1039/C8NR02278J
Naher MS, Paul AK (2017) Effect of integrated nutrient management on nutrient uptake and sustainable grain yield in transplanted aman rice. SAARC J Agric 15:43–53. https://doi.org/10.3329/sja.v15i1.33149
Olsen SR, Cole CV, Watanale FS, Dean LA (1954) Estimation of available phosphorus in phosphorus in soils by extraction with sodium bicarbonate. Circular 939. Washington, DC: United States Department of Agriculture
Patra A, Sharma VK, Purakayastha TJ, Barman M, Kumar S, Chobhe KA, Chakroborty D, Nath DJ, Anil AS (2020) Effect of long-term integrated nutrient management (INM) practices on soil nutrients availability and enzymatic activity under acidic inceptisol of north-eastern region of India. Commun Soil Sci Plant Anal 51:1137–1149. https://doi.org/10.1080/00103624.2020.1751185
Piper CS (1966) Soil and plant analysis, Asian Ed. Hans. Pub., Bombay, India, pp 368–374
Quijano-Guerta C, Kirk GJD, Portugal AM, Bartolome VI, McLaren GC (2002) Tolerance of rice germplasm to zinc deficiency. Field Crops Res 76:123–130. https://doi.org/10.1016/S0378-4290(02)00034-5
Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57. https://doi.org/10.1007/s40003-012-0049-z
Ram MS, Shankar T, Maitra S, Duvvada SK (2020) Effect of integrated nutrient management on growth, yield, nutrient content and economics of summer rice (Oryza sativa L.). Indian J Pure Appl Biosci 8:421–427. https://doi.org/10.18782/2582-2845.8172
Rollon RJC, Golis JM, Salas E (2021) Impacts of soil nutrient management practices on soil fertility, nutrient uptake, rice (Oryza sativa L.) productivity, and profitability. J Appl Biol Biotechnol 9:75–84. https://doi.org/10.7324/JABB.2021.9207
Subbiah B, Asija GL (1956) A rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25:259–260
Tarafdar JC, Agarwal A, Raliya R, Kumar P, Burman U, Kaul RK (2012) ZnO nanoparticles induced synthesis of polysaccharides and phosphateses by Aspergillus fungi. Adv Sci Eng Med 4:324–328. https://doi.org/10.1166/asem.2012.1160
Tarafdar JC, Xiang Y, Wang WN, Dong Q, Biswas P (2012) Standardization of size, shape and concentration of nanoparticle for plant application. Appl Biol Res 14:138–144
Tarafdar JC, Raliya R, Mahwar H, Rathore I (2014) Development of zinc nano fertilizer to enhance crop production in pearl millet (Pennisetum Americanum). Agric Res 3:257–262. https://doi.org/10.1007/s40003-014-0113-y
Torabian S, Zahedi M, Khoshgoftar AH (2015) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39:172–180. https://doi.org/10.1080/01904167.2015.1009107
Ullah H, Datta A, Samim NA, Din SU (2019) Growth and yield of lowland rice as affected by integrated nutrient management and cultivation method under alternate wetting and drying water regime. J Plant Nutr 42:580–594. https://doi.org/10.1080/01904167.2019.1567766
Urmi TA, Rahman MM, Islam MM, Islam MA, Jahan NA, Mia MAB, Akhter S, Siddiqui MH, Kalaji HM (2022) Integrated nutrient management for rice yield, soil fertility, and carbon sequestration. Plants 11:138. https://doi.org/10.3390/plants11010138
Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435. https://doi.org/10.1016/j.scitotenv.2018.02.313
Verma SK, Das AK, Gantait S, Kumar V, Gurel E (2019) Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. Sci Total Environ 667:485–499. https://doi.org/10.1016/j.scitotenv.2019.02.409
Verma SK, Das AK, Gantait S, Panwar Y, Kumar V, Brestic M (2022) Green synthesis of carbon-based nanomaterials and their applications in various sectors: a topical review. Carbon Lett 32:365–393. https://doi.org/10.1007/s42823-021-00294-7
Vitosh ML, Warncke DD, Lucas RE (1994) Secondary and micronutrients for vegetable and field crops. Michigan State University Extension Bulletin. p E-486
Walkley A, Black IA (1934) An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. J Soil Sci 63:251–263. https://doi.org/10.1097/00010694-194704000-00001
Wu F, Fang Q, Yan SW, Pan L, Tang XJ, Ye WL (2020) Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Environ Sci Pollut Res 27:26974–26981. https://doi.org/10.1007/s11356-020-08965-0
Yan S, Wu F, Zhou S, Yang J, Tang X, Ye W (2021) Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC Plant Biol 21:150. https://doi.org/10.1186/s12870-021-02929-3
Yang C, Yang L, Yang Y, Ouyang Z (2004) Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manag 70:67–81. https://doi.org/10.1016/j.agwat.2004.05.003
Zubere DA (1994) Recovery and enumeration of viable bacteria. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A, Mickelson SH (eds) Methods of soil analysis: part 2—microbiological and biochemical properties, Soil Sci Soc Am, Madison, Wis., pp 119–144