Ảnh hưởng của cấu trúc nanofiber In2O3 đến hiệu suất cảm biến amoniac của nanofiber hợp kim In2O3/PANI

Journal of Materials Science - Tập 52 - Trang 686-695 - 2016
Zengyuan Pang1, Qingxin Nie1, Anfang Wei2, Jie Yang1, Fenglin Huang1, Qufu Wei1
1Key Laboratory of Eco-Textiles (Ministry of Education), Jiangnan University, Wuxi, China
2Textiles and Clothing Department, Anhui Polytechnic University, Wuhu, China

Tóm tắt

Nanofiber hợp kim oxit indium/polyaniline (In2O3/PANI) với cấu trúc rắn hoặc rỗng của In2O3 đã được tổng hợp thành công thông qua phương pháp kết hợp dễ dàng và hiệu quả, bao gồm electrospinning, nung nóng ở nhiệt độ cao và polymer hóa tại chỗ. Nhiều kỹ thuật, bao gồm kính hiển vi điện tử quét, phương pháp Brunauer–Emmett–Teller, phổ hồng ngoại biến đổi Fourier, kính hiển vi điện tử truyền và nhiễu xạ tia X, đã được sử dụng để thu thập thông tin về hình thái, cấu trúc và tính tinh thể của các mẫu đã chuẩn bị. Hiệu suất cảm biến khí của các nanofiber hợp kim thu được đã được nghiên cứu bằng hệ thống thử nghiệm cảm biến khí tự chế ở nhiệt độ phòng. Tất cả các kết quả cho thấy cả nanofiber hợp kim In2O3/PANI rắn và rỗng đều có giá trị phản hồi cao hơn so với cảm biến PANI tinh khiết. Ngoài ra, tính chất cảm biến amoniac của nanofiber hợp kim In2O3/PANI rỗng tốt hơn nhiều so với nanofiber rắn. Hơn nữa, nanofiber hợp kim In2O3/PANI rỗng cũng cho thấy khả năng lặp lại và tính chọn lọc lý tưởng nhờ vào số lượng và loại hình P-N dị giao ở mức cao hơn và khác nhau.

Từ khóa

#In2O3; PANI; nanofiber; cảm biến khí; cấu trúc rỗng; hiệu suất cảm biến amoniac

Tài liệu tham khảo

Gong FL, Gong YY, Liu HZ, Zhang ML, Zhang YH, Li F (2016) Porous In2O3 nanocuboids modified with Pd nanoparticles for chemical sensors, toxic gases at room temperature. Sens Actuators B 223:384–391 Rai P, Yoon JW, Kwak CH, Lee JH (2016) Role of Pd nanoparticles in gas sensing behaviour of Pd@In2O3 yolk-shell nanoreactors. J Mater Chem A 4:264–269 Li FR, Jian JK, Wu R, Li J, Sun YF (2015) Synthesis, electrochemical and gas sensing properties of In2O3 nanostructures with different morphologies. J Alloy Compd 645:178–183 Kim J, Rim YS, Chen HJ, Cao HH, Nakatsuka N, Hinton HL, Zhao CZ, Andrews AM, Yang Y, Weiss PS (2015) Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift-off lithography. ACS Nano 9:4572–4582 Yang ZJ, Huang XC, Zhang RC, Li J, Xu Q, Hu XY (2012) Novel urchin-like In2O3-chitosan modified electrode for direct electrochemistry of glucose oxidase and biosensing. Electrochim Acta 70:325–330 Kim S, Jung J, Lee YJ, Ahn S, Hussain SQ, Park J, Song BS, Han S, Dao VA, Lee J, Yi J (2014) Role of double ITO/In2O3 layer for high efficiency amorphous/crystalline silicon heterojunction solar cells. Mater Res Bull 58:83–87 Kong LX, Dai QL, Miao C, Xu L, Song HW (2015) Doped In2O3 inverse opals as photoanode for dye sensitized solar cells. J Colloid Interf Sci 450:196–201 Tandon B, Shanker GS, Nag A (2014) Multifunctional Sn- and Fe-Codoped In2O3 colloidal nanocrystals: plasmonics and magnetism. J Phys Chem Lett 5:2306–2311 An YK, Wang SQ, Feng DQ, Wu ZH, Liu JW (2013) Correlation between oxygen vacancies and magnetism in Fe-doped In2O3 films. Appl Surf Sci 276:535–538 Kumar GM, Ilanchezhiyan P, Kumar AM, Shabi TS, Selvan ST, Suresh S, Yuldashev ShU, Kang TW (2015) Chemically-derived CuO/In2O3 -based nanocomposite for diode applications. CrystEngComm 17:5932–5939 Cai JJ, Li S, Pan HJ, Liu YL, Qin GW (2016) c-In2O3/a-Fe2O3 heterojunction photoanodes for water oxidation. J Mater Sci 51:8148–8155. doi:10.1007/s10853-016-0085-3 Ghosh SS, Neogi S, Biswas PK (2016) Sol–gel based Cd(II)-doped In2O3 transparent conducting thin film on glass. J Sol–Gel Sci Techn 78:195–206 Koudelka L, Racicky A, Mosner P, Rosslerova I, Montagne L, Revel B (2014) Behavior of indium oxide in zinc phosphate and borophosphate glasses. J Mater Sci 49:6967–6974. doi:10.1007/s10853-014-8402-1 Sadek AZ, Wlodarski W, Shin K, Kaner RB, Kalantar-zadeh K (2006) A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 17:448–4492 Park S, Kheel H, Sun GJ, Park SE, Lee C (2016) Single-step synthesis of In2O3 nanowires decorated with TeO2 nanobeads and their acetone-sensing properties. Appl Phys A 122:269 Wang LH, Cao J, Qian XM, Zhang HM (2016) Facile synthesis and enhanced gas sensing properties of grain size-adjustable In2O3 micro/nanotubes. Mater Lett 171:30–33 Tang W, Wang J (2015) Methanol sensing micro-gas sensors of SnO2–ZnO nanofibers on Si/SiO2/Ti/Pt substrate via stepwise-heating electrospinning. J Mater Sci 50:4209–4220. doi:10.1007/s10853-015-8972-6 Kim S, Lee HS, Jang B, Cho S, Lee W (2016) Strain-controlled nanocrack formation in a Pd film on polydimethylsiloxane for the detection of low H2 concentrations. J Mater Sci 51:4530–4537. doi:10.1007/s10853-016-9765-2 Zhang CJ, Bai WB, Yang ZP (2016) A novel photoelectrochemical sensor for bilirubin based on porous transparent TiO2 and molecularly imprinted polypyrrole. Electrochim Acta 187:451–456 Huang J, Kang YF, Yang TL, Wang Y, Wang SR (2011) Preparation of polythiophene/WO3 organic-inorganic hybrids and their gas sensing properties for NO2 detection at low temperature. J Nat Gas Chem 20:403–407 Pang ZY, Fu JP, Luo L, Huang FL, Wei QF (2014) Fabrication of PA6/TiO2/PANI composite nanofibers byelectrospinning-electrospraying for ammonia sensor. Colloid Surface A 46:1113–1118 Kadir RA, Li ZY, Sadek AZ, Rani RA, Zoolfakar AS, Field MR, Ou JZ, Chrimes AF, Kalantar-zadeh K (2014) Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J Phys Chem C 118:3129–3139 Wang BB, Fu XX, Liu F, Shi SL, Cheng JP, Zhang XB (2014) Fabrication and gas sensing properties of hollow core-shell SnO2/alpha-Fe2O3 heterogeneous structures. J Alloy Compd 587:82–89 Munoz J, Bartroli J, Cespedes F, Baeza M (2015) Influence of raw carbon nanotubes diameter for the optimization of the load composition ratio in epoxy amperometric composite sensors. J Mater Sci 50:652–661. doi:10.1007/s10853-014-8624-2 Pang ZY, Yang ZP, Chen Y, Zhang JM, Wang QQ, Huang FL, Wei QF (2016) A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloid Surface A 494:248–255 Zhou HM, Li ZY, Niu X, Xia X, Wei QF (2016) The enhanced gas-sensing and photocatalytic performance of hollow and hollow core-shell SnO2-based nanofibers induced by the Kirkendall effect. Ceram Int 42:1817–1826 Kim KN, Jung HR, Lee WJ (2016) Hollow cobalt ferrite-polyaniline nanofibers as magnetically separable visible-light photocatalyst for photodegradation of methyl orange. J Photoch Photobio A 321:257–265 Peng C, Zhang JL, Xiong ZG, Zhao BH, Liu PC (2015) Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Micropor Mesopor 215:133–142 Liu PC, Zhu YZ, Ma JH, Yang SG, Gong JH, Xu J (2013) Preparation of continuous porous alumina nanofibers with hollow structure by single capillary electrospinning. Coll Surf A 436:489–494 Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Goesele U (2006) Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat Mater 5:627–631 Cho JS, Kang YC (2015) Nanofibers comprising yolk-shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties. Small 11:4673–4681 Liu DY, Lin LS, Ren S, Fu SX (2016) Effect of polyvinyl pyrrolidone (PVP) molecular weights on dispersion of sub-micron nickel particles by chemical reduction process. J Mater Sci 51:3111–3117. doi:10.1007/s10853-015-9620-x Jayesh DP, Tapas KC (2009) Synthesis of PbS/poly (vinyl-pyrrolidone) nanocomposite. Mater Res Bull 44:1647–1651 Jaberolansar E, Kameli P, Ahmadvand H, Salamati H (2016) Synthesis and characterization of PVP-coated Co0.3Zn0.7Fe2O4 ferrite nanoparticles. J Magn Magn Mater 404:21–28 Yue YY, Han JQ, Han GP, Zhang QG, Alfred DF, Wu QL (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohyd Polym 133:438–447 Bai SL, Tian YL, Cui M, Sun JH, Tian Y, Luo RX, Chen AF, Li DQ (2016) Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature. Sens Actuators B 226:540–547 Ameen S, Akhtar MS, Ansari SG, Yang OB, Shin HS (2009) Electrophoretically deposited polyaniline/ZnO nanoparticles for p-n heterostructure diodes. Superlattices Microstruct 46:872–880