Effect of Ho Content and Heat Treatment on the Corrosion Resistance of Mg-xHo-3Sm-0.5Zr Alloy

Journal of Materials Engineering and Performance - Tập 32 - Trang 7785-7795 - 2022
Hang Leng1, Quanan Li1,2,3, Xiaoya Chen1,2, Hongxi Zhu1,2, Jun Chen1,2, Peijun Chen4, Jinfeng Tan5, Xiangyu Li6
1School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, China
2Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Nonferrous Metal New Materials and Advanced Processing Technology, Luoyang, China
3Longmen Laboratory, Luoyang, China
4Luoyang Shengya Magnesium Alloy Science and Technology Co. LTD, Luoyang, China
5CHINALCO Luoyang Copper Co. Ltd., Luoyang, China
6Luoyang Copper (Group) Co., Ltd., Luoyang, China

Tóm tắt

The corrosion resistance of as-cast Mg-xHo-3Sm-0.5Zr, solid solution and aged Mg-8Ho-3Sm-0.5Zr alloys was studied by electrochemical experiments, weight loss tests and microstructure analysis. The results showed that adding a proper amount of Ho to the as-cast alloy can refine the grain size. Furthermore, Ho can promote the precipitation of the Mg41Sm5 phase and form a new Mg24Ho5 phase. The Mg-8Ho-3Sm-0.5Zr alloy has the strongest corrosion resistance because of its uniform structure and the smallest grain size. Then, the Mg-8Ho-3Sm-0.5Zr alloy was heat treated. The results indicate that after solution treatment, the microstructure of the alloy is uniformly dispersed, and the second phase is dissolved in α-Mg, which improves the self-corrosion potential of the matrix. Its corrosion resistance is slightly better than that of the as-cast alloys. After aging treatment, a large number of second phases are uniformly dispersed to form a corrosion barrier, which further reduces the corrosion rate.

Tài liệu tham khảo

T.J. Luo, Y.S. Yang, Y.J. Li and X.G. Dong, Influence of Rare Earth Y on the Corrosion Behavior of As-Cast AZ91 Alloy, J. Electrochim. Acta., 2009, 54(26), p 6433–6437. Y. Hu, N. Yu, L. Zhao and G. Chen, Effect of Sm on the Microstructure and Properties of Mg-9Al Alloy, J. Int. J. Cast Met. Res., 2017, 30(6), p 317–321. M. Yang, X. Liu, Z. Zhang, Y. Song and L. Bai, Effect of Adding Rare Earth Elements Er and Gd on the Corrosion Residual Strength of Magnesium Alloy, J. Open Phys., 2019, 17(1), p 373–380. J.W. Chang, J. Duo, Y.Z. Xiang, H.Y. Yang, W.J. Ding and Y.H. Peng, Influence of Nd and Y Additions on the Corrosion Behaviour of Extruded Mg-Zn-Zr Alloys, J. Int. J. Miner. Metall. Mater., 2011, 18(2), p 203–209. T. Zhang, G.Z. Meng, Y.W. Shao, Z.Y. Cui and F.H. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy. Part II: Effect of Rare Earth Element Neodymium (Nd) on the Corrosion Behavior of Extruded Alloy, J. Corros. Sci., 2011, 53(9), p 2934–2942. H. Azzeddine, A. Hanna, A. Dakhouche, L. Rabahicd, N. Scharnagle, M. Dopitaf, F. Brissetg, A.L. Helbertg and T. Bauding, Impact of Rare-Earth Elements on the Corrosion Performance of Binary Magnesium Alloys, J. Alloys Compd., 2020, 829, p 154569. J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu and F.H. Wang, Significantly Improved Corrosion Resistance of Mg-15Gd-2Zn-0.39Zr Alloys: Effect of Heat-Treatment, J. Mater. Sci. Technol., 2019, 35(8), p 1644–1654. J.H. Liu, E.H. Han, Y.W. Song and D.Y. Shan, Effect of Twins on the Corrosion Behavior of Mg-5Y-7Gd-1Nd-0.5Zr Mg Alloy, J. Alloys Compd., 2018, 757, p 356–363. J.Y. Zhang, B. Jiang, Q.S. Yang, D. Huang, A. Tang, F.H. Pan and Q.Y. Hna, Role of Second Phases on the Corrosion Resistance of Mg-Nd-Zr Alloys, J. Alloys Compd., 2020, 849, p 156619. F.Y. Cao, J. Zhang, K.K. Li and G.L. Song, Influence of Heat Treatment on Corrosion Behavior of Hot Rolled Mg5Gd alloys, Trans. Nonferrous Met. Soc. China, 2021, 31(4), p 939–951. D. Li, Q. Wang and W. Ding, Effects of Ho on the Microstructure and Mechanical Properties of Mg-Zn-Ho-Zr Magnesium Alloys, Rare Met., 2011, 30(2), p 131–136. Q.M. Peng, H.W. Dong, L.D. Wang, Y.M. Wu and L.M. Wang, Aging Behavior and Mechanical Properties of Mg-Gd-Ho Alloys, Mater. Charact., 2008, 59(8), p 983–986. X.H. Zhou, T.W. Huang, Z.L. Wei, Q.R. Chen and F.X. Gan, Improvement of Corrosion Resistance of AZ91D Magnesium Alloy by Holmium Addition, Corros. Sci., 2006, 48(12), p 4223–4233. J.W. Chang, X.W. Guo, P.H. Fu, L.M. Peng and W.J. Ding, Effect of Heat Treatment on Corrosion and Electrochemical Behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) Alloy, Electrochim. Acta, 2007, 52(9), p 3160–3167. G. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5(12), p 837–858. J. Xie, J. Zhang and Z.H. You, Towards Developing Mg Alloys with Simultaneously Improved Strength and Corrosion Resistance via RE Alloying[J], J. Magnes. Alloys, 2021, 9(1), p 41–56. G. Song, A. Atrens, D. St John, S.J. Liu, K. Guan, R.Z. Wu, J. Wang and J. Feng, The Anodic Dissolution of Magnesium in Chloride and Sulphate Solutions[J], Corros. Sci., 1997, 39(10–11), p 1981–2004. X.J. Cui, C.H. Liu, R.S. Yang, M.T. Li and X.Z. Lin, Self-sealing Micro-Arc Oxidation Coating on AZ91D Mg Alloy and Its Formation Mechanism[J], Surf. Coat. Technol., 2015, 269, p 228–237. M. Anik and I.M. Gunesdogdu, Corrosion Characteristics of Alloy AZ63 in Buffered Neutral Solutions[J], Mater. Des., 2010, 31(6), p 3100–3105. M. Sun, G. Wu, W. Wang and W.J. Ding, Effect of Zr on the Microstructure, Mechanical Properties and Corrosion Resistance of Mg-10Gd-3Y Magnesium Alloy[J], Mater. Sci. Eng. A, 2009, 523(1–2), p 145–151. Q. Zhang, Q. Li and X.Y. Chen, Effect of Heat Treatment on Corrosion Behavior of Mg-5Gd-3Y-0.5Zr Alloy[J], RSC Adv., 2020, 10(71), p 43371–43382. E. Merson, V. Poluyanov, P. Myagkikh, D. Merson and A. Vinogradov, Fractographic Features of Technically Pure Magnesium, AZ31 and ZK60 Alloys Subjected to Stress Corrosion Cracking[J], Mater. Sci. Eng. A, 2020, 772, p 138744. R.C. Zeng, J. Zhang, W.J. Huang, W. Dietzel, K.U. Kainer, C. Blawert and K.E. Wei, Review of Studies on Corrosion of Magnesium Alloys[J], Trans. Nonferrous Met. Soc. China, 2006, 16, p s763–s771. X. Liu, D. Shan, Y. Song, R. Chen and E. Han, Influences of the Quantity of Mg2Sn Phase on the Corrosion Behavior of Mg-7Sn Magnesium Alloy[J], Electrochim. Acta, 2011, 56(5), p 2582–2590. Y. Gui, Q. Li, J. Chen, Q. Zhang, S. Fu and L. Zhu, Corrosion Behaviour and Electrochemistry of Mg-5Y-2Nd-0.5 Zr-xSm (x= 0, 1, 3 and 5) Alloys in 3.5 wt.% NaCl[J], Int. J. Electrochem. Sci., 2018, 13, p 11502–11515. Y. Ma, H. Xiong and B. Chen, Effect of Heat Treatment on Microstructure and Corrosion Behavior of Mg-5Al-1Zn-1Sn Magnesium Alloy, Corros. Sci., 2021, 191, p 109759. X. Li, Z. Hu, H. Yan, X. Wu, H. Xie and Z. Dong, Effect of Sm-Rich Phase on Corrosion Behavior of Hot-Extruded AZ31-1.5 Sm Magnesium Alloy[J], J. Mater. Eng. Perform., 2018, 27(6), p 3072–3082. Z. Li, Z. Peng, K. Qi, H. Li, Y. Qiu and X. Guo, Microstructure and Corrosion of Cast Magnesium Alloy ZK60 in NaCl Solution[J], Materials, 2020, 13(17), p 3833. X. Liu, D. Shan, Y. Song and E.H. Han, Influence of Yttrium Element on the Corrosion Behaviors of Mg-Y Binary Magnesium Alloy[J], J. Magnes. Alloys, 2017, 5(1), p 26–34. S. Sharland, C. Jackson and A. Diver, A Finite-Element Model of the Propagation of Corrosion Crevices and Pits[J], Corros. Sci., 1989, 29(9), p 1149–1166. G. Makar and J. Kruger, Corrosion of Magnesium, Int. Mater. Rev., 1993, 38(3), p 138–153. H.M. Ahmed, H.A. Ahmed, M. Hefni and E.B. Moustafa, Effect of Grain Refinement on the Dynamic, Mechanical Properties, and Corrosion Behaviour of Al-Mg Alloy[J], Metals, 2021, 11(11), p 1825. J.W. Li, Y.M. Qiu, J.J. Yang, Y.Y. Sheng, Y.I. Yi, Y. I., X. Zhen, L.X. Chen, F.L. Yin, J.Z. Su, T.J. Zhang, X. Tong, B. Guo, Effect of Grain Refinement Induced by Wire and Arc Additive Manufacture (WAAM) on the Corrosion Behaviors of AZ31 Magnesium Alloy in NaCl Solution[J]. J. Magnes. Alloys (2021)