Effect of Ga alloying on thermoelectric properties of InSb

Current Applied Physics - Tập 18 - Trang 893-897 - 2018
Zhengliang Du1, Xiaolu Chen1, Junhao Zhu2, Jiaolin Cui1
1School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
2Materials Science and Engineering College, China University of Mining and Technology, Xuzhou 221116, China

Tài liệu tham khảo

Vining, 1995, 277 Bowers, 1959, InAs and InSb as thermoelectric materials, J. Appl. Phys., 30, 930, 10.1063/1.1735264 Yamaguchi, 2005, Thermoelectric properties and figure of merit of a Te-doped InSb bulk single crystal, Appl. Phys. Lett., 87, 201902, 10.1063/1.2130390 Zhang, 2011, Enhanced thermoelectric performance in In1-xGaxSb originating from the scattering of point defects and nanoinclusion, J. Mater. Chem., 21, 12398, 10.1039/c1jm10542f Ji, 2008, Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach, J. Appl. Phys., 104, 034907, 10.1063/1.2963706 Brown, 2006, Yb14MnSb11: new high efficiency thermoelectric material for power generation, Chem. Mater., 18, 1873, 10.1021/cm060261t Jiang, 2013, Microstructure and thermoelectric properties of InSb compound with nonsoluble NiSb in situ precipitates, J. Mater. Res., 28, 3394, 10.1557/jmr.2013.353 Cheng, 2017, New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance, J. Mater. Chem., 5, 5163, 10.1039/C6TA10827J Pei, 2009, Vacancy phonon scattering in thermoelectric In2Te3–InSb solid solutions, Appl. Phys. Lett., 94, 122112, 10.1063/1.3109788 Zhang, 2008, Thermoelectric properties of n-type Mg2Si0.6-ySbySn0.4 compounds, Phys. Status Solidi, 205, 1657, 10.1002/pssa.200723497 Yu, 2009, High-performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering, Acta Mater., 57, 2757, 10.1016/j.actamat.2009.02.026 Chen, 2011, Miscibility gap and thermoelectric properties of ecofriendly Mg2Si1-xSnx (0.1 ≤x≤0.8) solid solutions by flux method, J. Mater. Res., 26, 3038, 10.1557/jmr.2011.385 Wang, 2013, The criteria for beneficial disorder in thermoelectric solid solutions, Adv. Funct. Mater., 23, 1586, 10.1002/adfm.201201576 Gao, 2014, Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials, Dalton Trans., 43, 14072, 10.1039/C4DT01734J Miki, 1974, Undoped n-type GaSb grown by liquid phase epitaxy, Jap. J. Appl. Phys., 13, 203, 10.1143/JJAP.13.203 Kim, 2010, Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors, Phys. Rev. B, 82, 205212, 10.1103/PhysRevB.82.205212 Abeles, 1963, Lattice thermal conductivity of disordered semiconductor alloys at high temperatures, Phys. Rev., 131, 1906, 10.1103/PhysRev.131.1906 Steigmeier, 1966, Acoustical-optical phonon scattering in Ge, Si, and III-V compounds, Phys. Rev., 141, 767, 10.1103/PhysRev.141.767 Fedorov, 2000, Optimization of thermoelectric parameters in some silicide based materials, 17 Nolas, 2007, Transport properties of polycrystalline Mg2Si1−ySby (0 ≤y <0.4), Phys. Rev. B, 76, 235204, 10.1103/PhysRevB.76.235204 Liu, 2011, Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0.5−ySn0.5Sby through adjustment of the Mg content, Chem. Mater., 13, 5256, 10.1021/cm202445d Zhang, 2008, In situ synthesis and thermoelectric properties of La-doped Mg2(Si, Sn) composites, J. Phys. D Appl. Phys., 41, 185103, 10.1088/0022-3727/41/18/185103 Molodyan, 1966, The effective mass of electrons in (InSb)x (InTe)1-x crystals, Phys. Status Solidi, 18, 677, 10.1002/pssb.19660180219 May, 2008, Thermoelectric performance of lanthanum telluride produced via mechanical alloying, Phys. Rev. B Condens. Matter, 78, 125205, 10.1103/PhysRevB.78.125205