Effect of Ga alloying on thermoelectric properties of InSb
Tài liệu tham khảo
Vining, 1995, 277
Bowers, 1959, InAs and InSb as thermoelectric materials, J. Appl. Phys., 30, 930, 10.1063/1.1735264
Yamaguchi, 2005, Thermoelectric properties and figure of merit of a Te-doped InSb bulk single crystal, Appl. Phys. Lett., 87, 201902, 10.1063/1.2130390
Zhang, 2011, Enhanced thermoelectric performance in In1-xGaxSb originating from the scattering of point defects and nanoinclusion, J. Mater. Chem., 21, 12398, 10.1039/c1jm10542f
Ji, 2008, Improved thermoelectric performance in polycrystalline p-type Bi2Te3 via an alkali metal salt hydrothermal nanocoating treatment approach, J. Appl. Phys., 104, 034907, 10.1063/1.2963706
Brown, 2006, Yb14MnSb11: new high efficiency thermoelectric material for power generation, Chem. Mater., 18, 1873, 10.1021/cm060261t
Jiang, 2013, Microstructure and thermoelectric properties of InSb compound with nonsoluble NiSb in situ precipitates, J. Mater. Res., 28, 3394, 10.1557/jmr.2013.353
Cheng, 2017, New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance, J. Mater. Chem., 5, 5163, 10.1039/C6TA10827J
Pei, 2009, Vacancy phonon scattering in thermoelectric In2Te3–InSb solid solutions, Appl. Phys. Lett., 94, 122112, 10.1063/1.3109788
Zhang, 2008, Thermoelectric properties of n-type Mg2Si0.6-ySbySn0.4 compounds, Phys. Status Solidi, 205, 1657, 10.1002/pssa.200723497
Yu, 2009, High-performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering, Acta Mater., 57, 2757, 10.1016/j.actamat.2009.02.026
Chen, 2011, Miscibility gap and thermoelectric properties of ecofriendly Mg2Si1-xSnx (0.1 ≤x≤0.8) solid solutions by flux method, J. Mater. Res., 26, 3038, 10.1557/jmr.2011.385
Wang, 2013, The criteria for beneficial disorder in thermoelectric solid solutions, Adv. Funct. Mater., 23, 1586, 10.1002/adfm.201201576
Gao, 2014, Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials, Dalton Trans., 43, 14072, 10.1039/C4DT01734J
Miki, 1974, Undoped n-type GaSb grown by liquid phase epitaxy, Jap. J. Appl. Phys., 13, 203, 10.1143/JJAP.13.203
Kim, 2010, Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors, Phys. Rev. B, 82, 205212, 10.1103/PhysRevB.82.205212
Abeles, 1963, Lattice thermal conductivity of disordered semiconductor alloys at high temperatures, Phys. Rev., 131, 1906, 10.1103/PhysRev.131.1906
Steigmeier, 1966, Acoustical-optical phonon scattering in Ge, Si, and III-V compounds, Phys. Rev., 141, 767, 10.1103/PhysRev.141.767
Fedorov, 2000, Optimization of thermoelectric parameters in some silicide based materials, 17
Nolas, 2007, Transport properties of polycrystalline Mg2Si1−ySby (0 ≤y <0.4), Phys. Rev. B, 76, 235204, 10.1103/PhysRevB.76.235204
Liu, 2011, Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0.5−ySn0.5Sby through adjustment of the Mg content, Chem. Mater., 13, 5256, 10.1021/cm202445d
Zhang, 2008, In situ synthesis and thermoelectric properties of La-doped Mg2(Si, Sn) composites, J. Phys. D Appl. Phys., 41, 185103, 10.1088/0022-3727/41/18/185103
Molodyan, 1966, The effective mass of electrons in (InSb)x (InTe)1-x crystals, Phys. Status Solidi, 18, 677, 10.1002/pssb.19660180219
May, 2008, Thermoelectric performance of lanthanum telluride produced via mechanical alloying, Phys. Rev. B Condens. Matter, 78, 125205, 10.1103/PhysRevB.78.125205